

SGM8531/2 500kHz, 18µA, Rail-to-Rail I/O CMOS Operational Amplifiers

PRODUCT DESCRIPTION

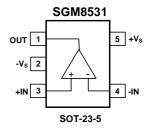
The SGM8531 (single) and SGM8532 (dual) are low cost, rail-to-rail input and output voltage feedback amplifiers. They have a wide input common-mode voltage range and output voltage swing, and take the minimum operating supply voltage down to 2.1V. The maximum recommended supply voltage is 5.5V. All are specified over the extended -40°C to +125°C temperature range.

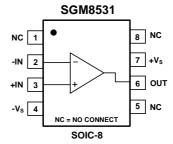
The SGM8531/2 provide 500kHz bandwidth at a low current consumption of 18µA per amplifier. Very low input bias currents of 0.5pA enable the SGM8531/2 to be used for integrators, photodiode amplifiers, and piezoelectric sensors. Rail-to-rail input and output are useful to designers for buffering ASIC in single-supply systems.

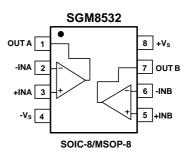
Applications for these amplifiers include safety monitoring, portable equipment, battery and power supply control, and signal conditioning and interfacing for transducers in very low power systems.

The SGM8531 single is available in the Green SOT-23-5 and SOIC-8 packages. The SGM8532 dual comes in Green SOIC-8 and MSOP-8 packages.

APPLICATIONS


ASIC Input or Output Amplifier
Sensor Interface
Piezo Electric Transducer Amplifier
Medical Instrumentation
Mobile Communication
Audio Output
Portable Systems
Smoke Detectors
Mobile Telephone
Notebook PC
PCMCIA Cards
Battery-Powered Equipment


FEATURES


- Low Cost
- Rail-to-Rail Input and Output 0.8mV Typical Vos
- Unity Gain Stable
- Gain Bandwidth Product: 500kHz
- Very Low Input Bias Currents: 0.5pA
- Supply Voltage Range: 2.1V to 5.5V
- Input Voltage Range:
 - -0.1V to +5.6V with $V_s = 5.5V$
- Low Supply Current: 18µA/Amplifier
- Small Packaging

SGM8531 Available in SOIC-8 and SOT-23-5 SGM8532 Available in SOIC-8 and MSOP-8

PIN CONFIGURATIONS (Top View)

PACKAGE/ORDERING INFORMATION

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
SGM8531	SGM8531XN5/TR	SOT-23-5	Tape and Reel, 3000	8531
	SGM8531XS/TR	SOIC-8	Tape and Reel, 2500	SGM8531XS
SGM8532	SGM8532XS/TR	SOIC-8	Tape and Reel, 2500	SGM8532XS
	SGM8532XMS/TR	MSOP-8	Tape and Reel, 3000	SGM8532XMS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	6V
Common-Mode Input Voltage $(-V_S)$ - 0.5V to $(+V_S)$ + 0.5	5V
Storage Temperature Range65°C to +150	°C
Junction Temperature150)°C
Operating Temperature Range40°C to +125	°C
Package Thermal Resistance @ T _A = +25°C	
SOT-23-5, θ _{JA}	/W

SOIC-8, θ _{JA}	125°C/W
MSOP-8, θ _{JA}	216°C/W
Lead Temperature Range (Soldering 10 sec)	260°C
ESD Susceptibility	
HBM	4000V
MM	400V

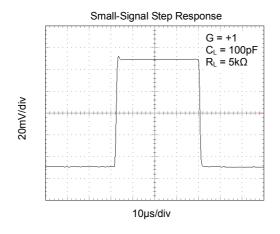
NOTE:

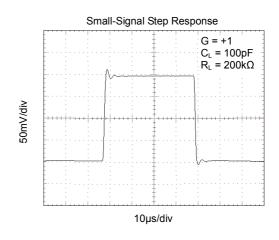
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

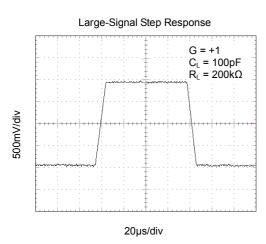
CAUTION

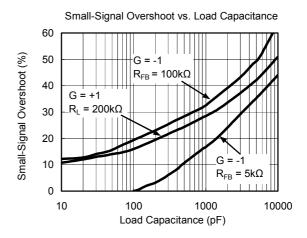
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

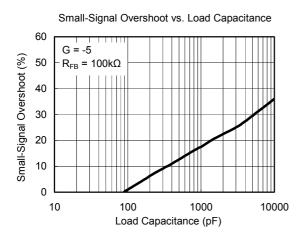
SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

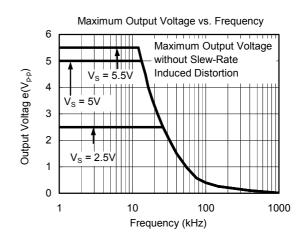

ELECTRICAL CHARACTERISTICS

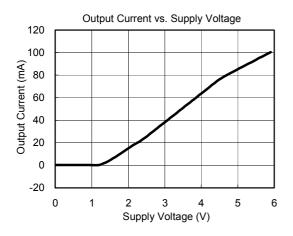

(At V_S = +5V, R_L = 200k Ω connected to $V_S/2$ and V_{OUT} = $V_S/2$, unless otherwise noted.)

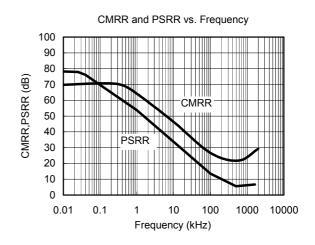

			SGM8531/2				
PARAMETER	SYMBOL	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE			
			+25℃	+25℃	-40℃ to +125℃	UNITS	MINMAX
INPUT CHARACTERISTICS							
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	0.8	3.5	5.4	mV	MAX
Input Bias Current	I _B		0.5			pA	TYP
Input Offset Current	los		0.5			pA	TYP
Common-Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1 to +5.6			V	TYP
Common-Mode Rejection Ratio	CMRR	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	88	71	68	- dB MIN	
Common-wode Rejection Ratio	CIVILATA	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 5.6V	75	60	57		
Open-Loop Voltage Gain	A _{OL}	$R_L = 5k\Omega$, $V_O = +0.1V$ to +4.9V	104	86	81	- dB MIN	
Open-Loop vollage Gain	AoL	$R_L = 100k\Omega$, $V_O = +0.015V$ to $+4.985V$	110	90	86		
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$		1.7			μV/°C	MIN
OUTPUT CHARACTERISTICS							
	V _{OH}	R _L = 100kΩ	4.997	4.980	4.970	V	MIN
Output Valtage Curing from Deil	V _{OL}	R _L = 100kΩ	3	20	30	mV	MAX
Output Voltage Swing from Rail	V _{OH}	$R_L = 10k\Omega$	4.994	4.970	4.960	V	MIN
	V _{OL}	$R_L = 10k\Omega$	6	30	40	mV	MAX
Output Current	I _{SOURCE}	B = 100 to CND	85	60	45	mA	MIN
Output Current	I _{SINK}	$R_L = 10\Omega$ to GND	76	60	45	IIIA	
POWER SUPPLY	•						
Operating Voltage Bange				2.1	2.5	V	MIN
Operating Voltage Range				5.5	5.5	V	MAX
Power Supply Rejection Ratio	PSRR	$V_S = +2.5V$ to +5.5V, $V_{CM} = +0.5V$	85	70	66	dB	MIN
Quiescent Current / Amplifier	ΙQ		18	33	39	μA	MAX
DYNAMIC PERFORMANCE (CL	= 100pF)						
Gain-Bandwidth Product	GBP		500			kHz	TYP
Slew Rate	SR	G = +1, 2V Output Step	0.2			V/µs	TYP
Settling Time to 0.1%	ts	G = +1, 2V Output Step	18			μs	TYP
Overload Recovery Time		V _{IN} ·Gain = V _S	16			μs	TYP
NOISE PERFORMANCE							
Voltage Naige Demaits		f = 1kHz	33			nV/ √Hz	TYP
Voltage Noise Density	e _n	f = 10kHz	20			nV/ √Hz	TYP
						•	1

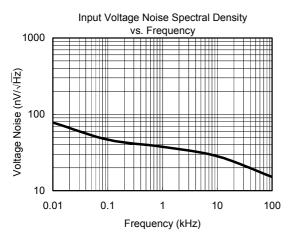

TYPICAL PERFORMANCE CHARACTERISTICS

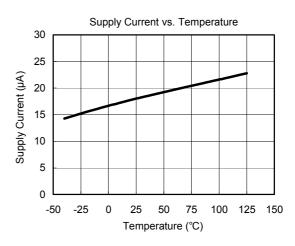

At T_A = +25°C, V_S = +5V, and R_L = 200k Ω connected to $V_S/2$, unless otherwise noted.

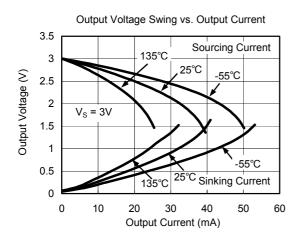


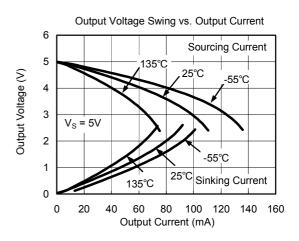


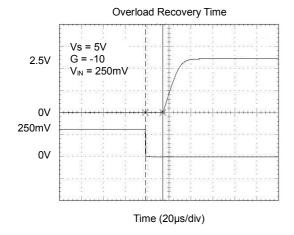


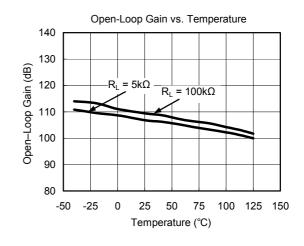


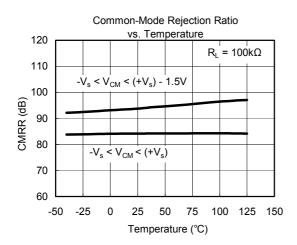

TYPICAL PERFORMANCE CHARACTERISTICS

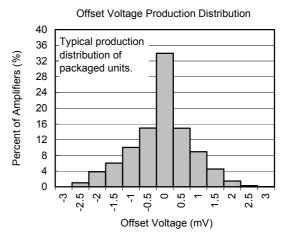

At T_A = +25°C, V_S = +5V, and R_L = 200k Ω connected to $V_S/2$, unless otherwise noted.



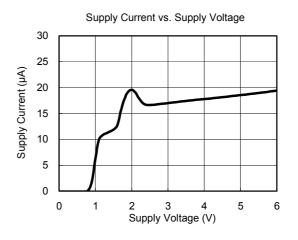







TYPICAL PERFORMANCE CHARACTERISTICS


At T_A = +25°C, V_S = +5V, and R_L = 200k Ω connected to $V_S/2$, unless otherwise noted.



APPLICATION NOTES

Driving Capacitive Loads

The SGM853X can directly drive 250pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

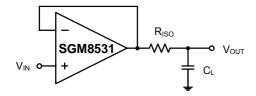


Figure 1. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. R_{F} provides the DC accuracy by connecting the inverting signal with the output, C_{F} and R_{Iso} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

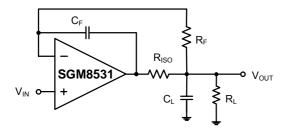


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The SGM853X family operates from either a single +2.1V to +5.5V supply or dual $\pm 1.05V$ to $\pm 2.75V$ supplies. For single-supply operation, bypass the power supply V_{DD} with a 0.1µF ceramic capacitor which should be placed close to the V_{DD} pin. For dual-supply operation, both the V_{DD} and the V_{SS} supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.

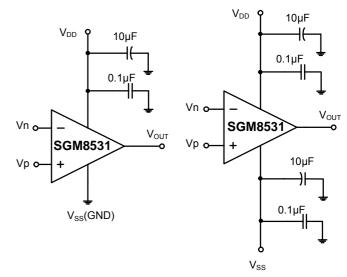


Figure 3. Amplifier with Bypass Capacitors

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal to $(R_4 / R_3 = R_2 / R_1)$, then $V_{OUT} = (Vp - Vn) \times R_2 / R_1 + V_{REF}$.

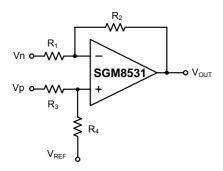


Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with a high input impedance.

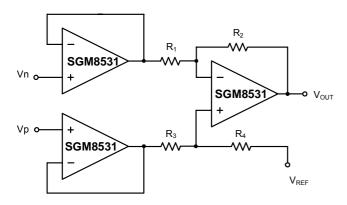


Figure 5. Instrumentation Amplifier

Low Pass Active Filter

The low pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. The large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

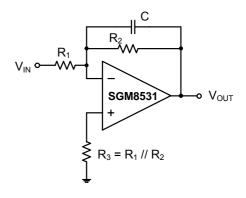
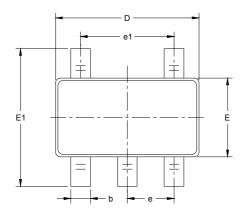
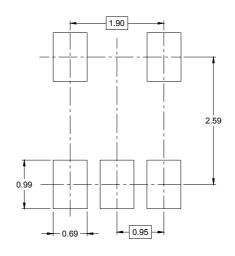
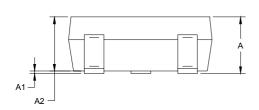
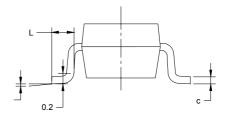
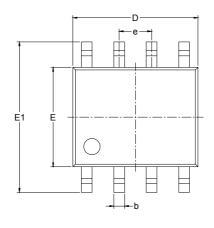




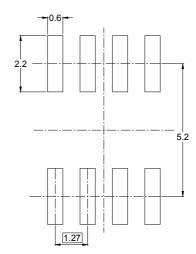
Figure 6. Low Pass Active Filter


PACKAGE OUTLINE DIMENSIONS

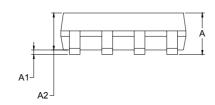

SOT-23-5

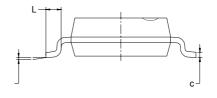
RECOMMENDED LAND PATTERN (Unit: mm)



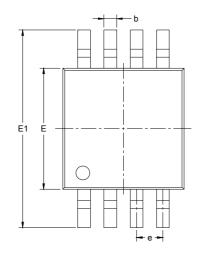


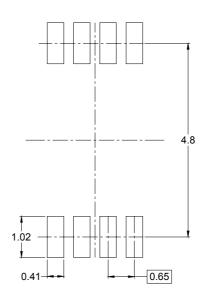
Symbol	_	nsions imeters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037	BSC	
e1	1.900	BSC	0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0° 8°		


PACKAGE OUTLINE DIMENSIONS

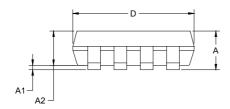

SOIC-8

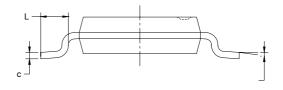
RECOMMENDED LAND PATTERN (Unit: mm)





Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	


PACKAGE OUTLINE DIMENSIONS


MSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650	BSC	0.026 BSC		
L	0.400	0.400 0.800 0.016		0.031	
θ	0°	6°	0° 6°		