

SGM8632C 480µA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifier

GENERAL DESCRIPTION

The dual SGM8632C is a low noise, low voltage, and low power operational amplifier that can be designed into a wide range of applications. The SGM8632C has a high gain-bandwidth product of 6MHz, a slew rate of $3.7V/\mu s$ and a quiescent current of $480\mu A/amplifier$ at 5V.

The SGM8632C is designed to provide optimal performance in low voltage and low noise systems. It provides rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV. The operating supply range is from 2V to 5.5V.

The dual SGM8632C is available in Green MSOP-8 package. It is specified over the extended industrial temperature range (-40°C to +125°C).

FEATURES

- Rail-to-Rail Input and Output
- 3.5mV Maximum Input Offset Voltage
- High Gain-Bandwidth Product: 6MHz
- High Slew Rate: 3.7V/µs
- Settling Time to 0.1% with 2V Step: 0.5µs
- Overload Recovery Time: 0.9µs
- Low Noise: $13nV/\sqrt{Hz}$ at 1kHz
- Supply Voltage Range: 2V to 5.5V
- Input Voltage Range: -0.1V to +5.6V with V_s = 5.5V
- Low Supply Current: 480µA/Amplifier (TYP)
- Available in Green MSOP-8 Package

APPLICATIONS

Sensors

Audio

Active Filters

A/D Converters

Communications

Test Equipment

Cellular and Cordless Phones

Laptops and PDAs

Photodiode Amplification

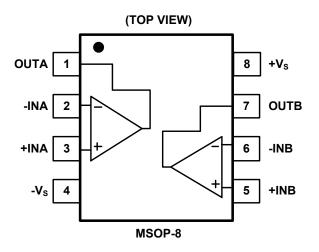
Battery-Powered Instrumentation

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM8632C	MSOP-8	-40°C to +125°C	SGM8632CXMS8G/TR	SGM8632 XMS XXXXX	Tape and Reel, 4000	

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.


ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +Vs to -Vs6V
Input Common Mode Voltage Range
(-V _S) - 0.3V to (+V _S) + 0.3V
Package Thermal Resistance @ T _A = +25°C
MSOP-8, θ _{JA}
Storage Temperature Range65°C to +150°C
Junction Temperature+150°C
Lead Temperature (Soldering 10sec)+260°C
ESD Susceptibility
HBM8000V
MM400V
CDM1000V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

PIN CONFIGURATION

OVERSTRESS CAUTION

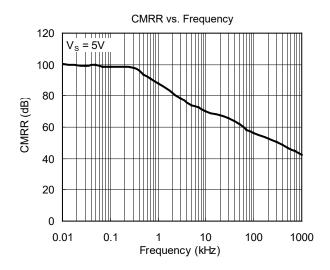
Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

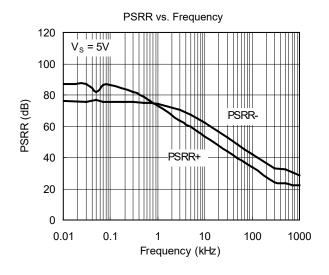
ESD SENSITIVITY CAUTION

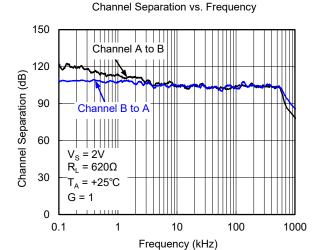
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

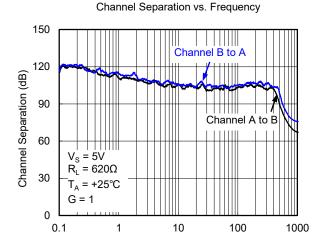
DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

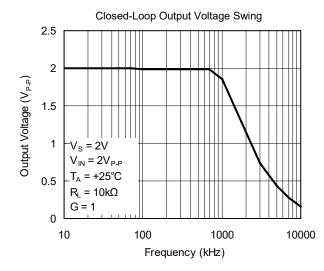

ELECTRICAL CHARACTERISTICS

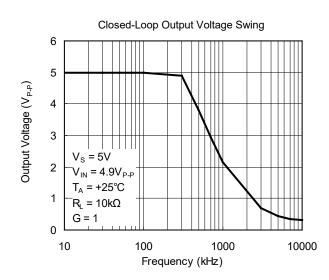

(At $T_A = +25$ °C, $V_S = 5V$, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.)

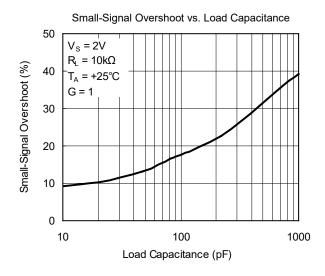

		TYP	TYP MIN/MAX OVER TEMPERATUR					
PARAMETER	CONDITIONS	.0590	.0500	-40°C to	-40℃ to	UNITS	MIN/	
		+25°C	+25℃	+85℃ +125℃		UNITS	MAX	
INPUT CHARACTERISTICS								
Input Offset Voltage (Vos)		0.9	3.5	3.7	3.8	mV	MAX	
Input Bias Current (I _B)		1				pА	TYP	
Input Offset Current (I _{OS})		1				pА	TYP	
Input Common Mode Voltage Range (V _{CM})	V _S = 5.5V	-0.1 to 5.6				V	TYP	
Common Mode Pointin Potic (CMPP)	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	84	68	67	66	dB	MIN	
Common Mode Rejection Ratio (CMRR)	$V_S = 5.5V$, $V_{CM} = -0.1V$ to $5.6V$	76				dB	MIN	
On an I am Waltama Cain (A)	$R_L = 600\Omega$, $V_{OUT} = 0.15V$ to 4.85V	86	79	73	69	dB	MIN	
Open-Loop Voltage Gain (A _{OL})	$R_L = 10k\Omega$, $V_{OUT} = 0.05V$ to 4.95V	103				dB	MIN	
Input Offset Voltage Drift (ΔV _{OS} /ΔT)		2.4				μV/°C	TYP	
OUTPUT CHARACTERISTICS	•							
Outrout Valtage Coding France Dail	R _L = 600Ω	0.079				V	TYP	
Output Voltage Swing from Rail	$R_L = 10k\Omega$	0.007				V	TYP	
Output Current (I _{ΟυΤ})		58	40	30	26	mA	MIN	
Closed-Loop Output Impedance	f = 200kHz, G = 1	5.4				Ω	TYP	
POWER SUPPLY	•							
Operating Valtage Range		2	2	2	2	V	MIN	
Operating Voltage Range		5.5	5.5	5.5	5.5	V	MAX	
Power Supply Rejection Ratio (PSRR)	$V_S = 2V \text{ to } 5.5V,$ $V_{CM} = (-V_S) + 0.5V$	84	69	68	67	dB	MIN	
Quiescent Current/Amplifier (IQ)	I _{OUT} = 0	480	620	720	790	μΑ	MAX	
DYNAMIC PERFORMANCE								
Gain-Bandwidth Product (GBP)		6				MHz	TYP	
Phase Margin (φ ₀)		63				0	TYP	
Full Power Bandwidth (BW _P)	<1% distortion	250				kHz	TYP	
Slew Rate (SR)	G = 1, 2V output step	3.7				V/µs	TYP	
Settling Time to 0.1% (t _s)	G = 1, 2V output step	0.5				μs	TYP	
Overload Recovery Time	V _{IN} × Gain = V _S	0.9				μs	TYP	
NOISE PERFORMANCE						•		
Voltage Noise Density (en)	f = 1kHz	13				nV/√Hz	TYP	

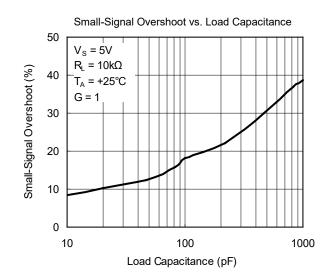

TYPICAL PERFORMANCE CHARACTERISTICS

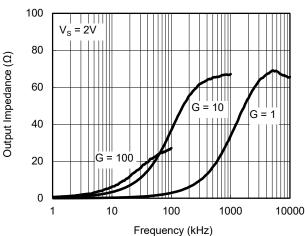
At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.



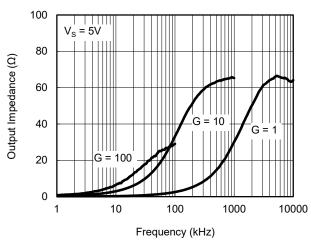


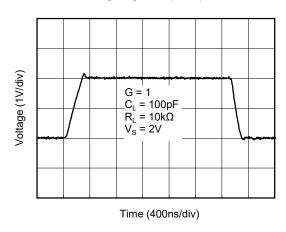


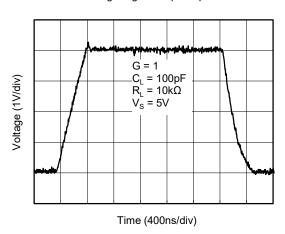

Frequency (kHz)

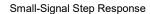


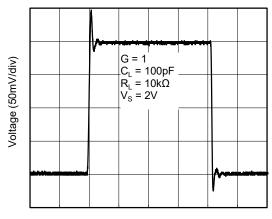
At $T_A = +25^{\circ}C$, $V_{CM} = V_S/2$, $R_L = 600\Omega$, unless otherwise noted.



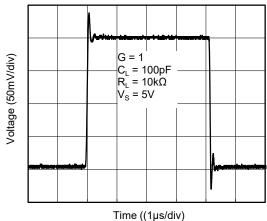

Output Impedance vs. Frequency 100

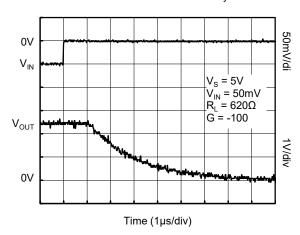

Output Impedance vs. Frequency


Large-Signal Step Response

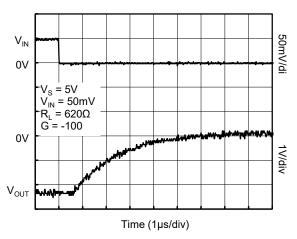


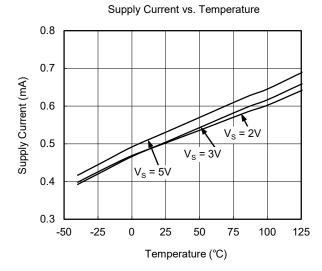
Large-Signal Step Response

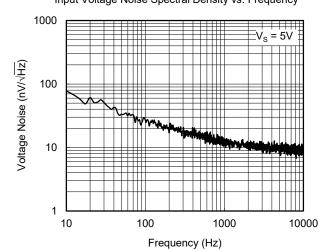

At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.



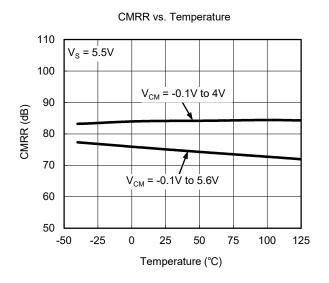
Time (1µs/div)

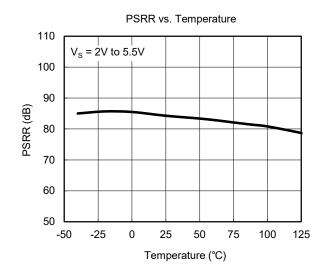

Small-Signal Step Response

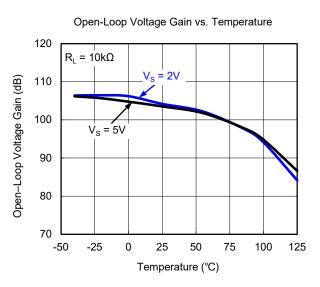

Positive overload Recovery

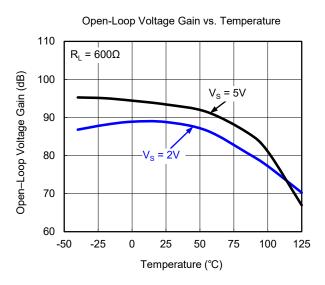


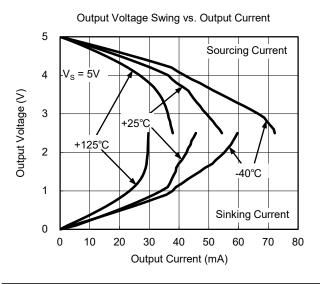
Negative Overload Recovery



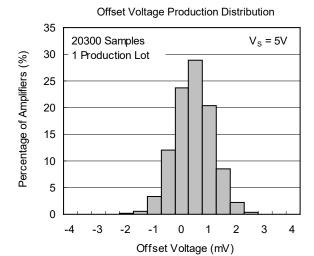

Input Voltage Noise Spectral Density vs. Frequency






At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.





At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

APPLICATION NOTES

Driving Capacitive Loads

The SGM8632C can directly drive 1000pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of the amplifier and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

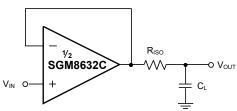


Figure 1. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. R_{F} provides the DC accuracy by connecting the inverting signal with the output. C_{F} and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

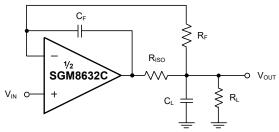


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's closed-loop gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The SGM8632C operates from either a single +2V to +5.5V supply or dual $\pm 1V$ to $\pm 2.75V$ supplies. For single-supply operation, bypass the power supply $\pm V_S$ with a $0.1\mu F$ ceramic capacitor which should be placed close to the $\pm V_S$ pin. For dual-supply operation, both the $\pm V_S$ and the $\pm V_S$ supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors. $2.2\mu F$ tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interference).

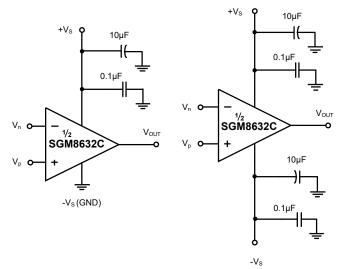


Figure 3. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for SGM8632C circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_p - V_n) \times R_2/R_1 + V_{REF}$.

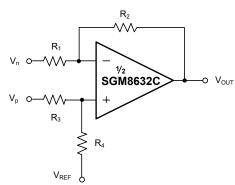


Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with a high input impedance.

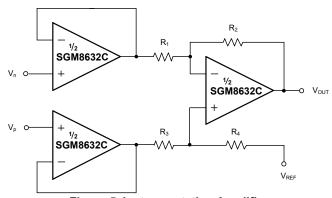
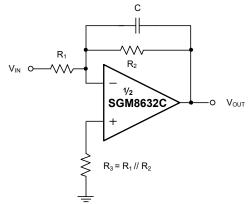
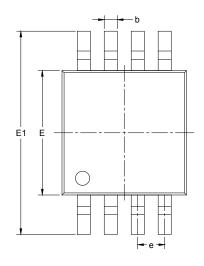


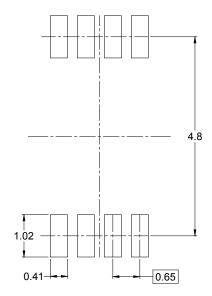
Figure 5. Instrumentation Amplifier

Active Low-Pass Filter

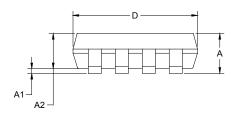
The low-pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

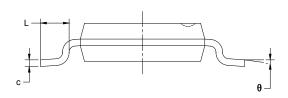



Figure 6. Active Low-Pass Filter

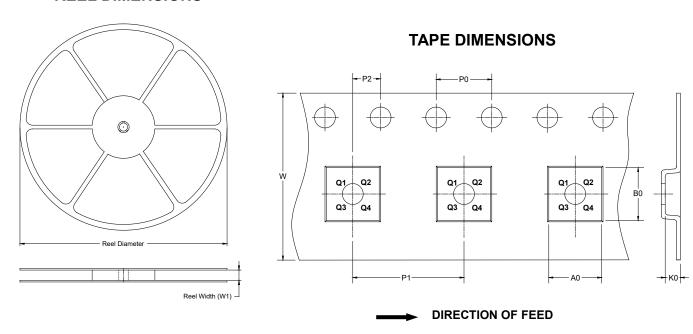

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (NOVEMBER 2017) to REV.A


PACKAGE OUTLINE DIMENSIONS MSOP-8

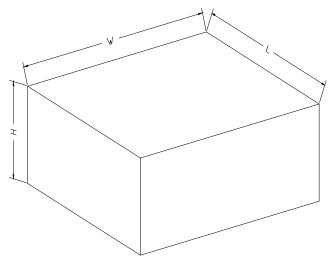
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	0.820	1.100	0.032	0.043		
A1	0.020	0.150	0.001	0.006		
A2	0.750	0.950	0.030	0.037		
b	0.250	0.380	0.010	0.015		
С	0.090	0.230	0.004	0.009		
D	2.900	3.100	0.114	0.122		
Е	2.900	3.100	0.114	0.122		
E1	4.750	5.050	0.187	0.199		
е	0.650	BSC	0.026 BSC			
L	0.400	0.800	0.016	0.031		
θ	0°	6°	0°	6°		

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
MSOP-8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5