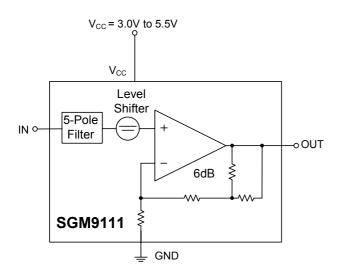


SGM9111 8MHz Rail-to-Rail Composite Video Driver with 6dB Gain


PRODUCT DESCRIPTION

The SGM9111 is single rail-to-rail 5-pole output reconstruction filter with a -3dB bandwidth of 8MHz and a slew rate of 34.8V/µs. Operating from single supplies ranging from 3.0V to 5.5V and sinking an ultra-low 7mA quiescent current, the SGM9111 is ideally suited for low power, battery-operated applications.

The SGM9111 employs an internal level shift circuit that avoids sync-pulse clipping and allows DC-coupled output. It is specified over the extended -40°C to +85°C temperature range.

It has Green of SOIC-8 and SC70-5 packages.

BLOCK DIAGRAM

FEATURES

- Low Cost
- Excellent Video Performance
- 5-Pole Reconstruction Filter
- Internal Gain: 6dB
- Rail-to-Rail Output
- Input Voltage Range Includes Ground
- AC-Coupled Input
- Operates on 3.0V to 5.5V Single-Supplies
- Low Power
- 7mA Typical Supply Current
- Small Packaging SGM9111 Available in Green SOIC-8 and SC70-5 Packages

APPLICATIONS

Video Amplifiers Cable and Satellite Set top Boxes Communications Devices Video on Demand Portable and Handheld Products Personal Video Recorders DVD Players HDTV

SG Micro Limited www.sg-micro.com

8MHz Rail-to-Rail Composite Video Driver with 6dB Gain

PACKAGE/ORDERING INFORMATION

ORDER NUMBER	PACKAGE DESCRIPTION	TEMPERATURE RANGE	PACKAGE OPTION	MARKING INFORMATION
SGM9111YS/TR	SOIC-8	-40℃ to +85℃	Tape and Reel, 2500	SGM9111YS
SGM9111YC5/TR	SC70-5	-40℃ to +85℃	Tape and Reel, 3000	9111

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC} to GND	6V
Input Voltage	. GND - 0.3V to (V _{CC}) +0.3V
Storage Temperature Range	65°C to +150°C
Junction Temperature	160°C
Operating Temperature Range	40°C to +85°C
Lead Temperature Range (Solderin	g 10 sec)

ESD Susceptibility	
НВМ	
MM	400V

NOTE:

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN DESCRIPTION

NAME	SOIC-8 PIN	SC70-5 PIN	FUNCTION	
IN	1	3	Video input	
GND	3	1, 2	Ground	
Vcc	7	5	Power supply	
OUT	8	4	Filtered video output	
NC	2, 4, 5, 6		No connect	

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

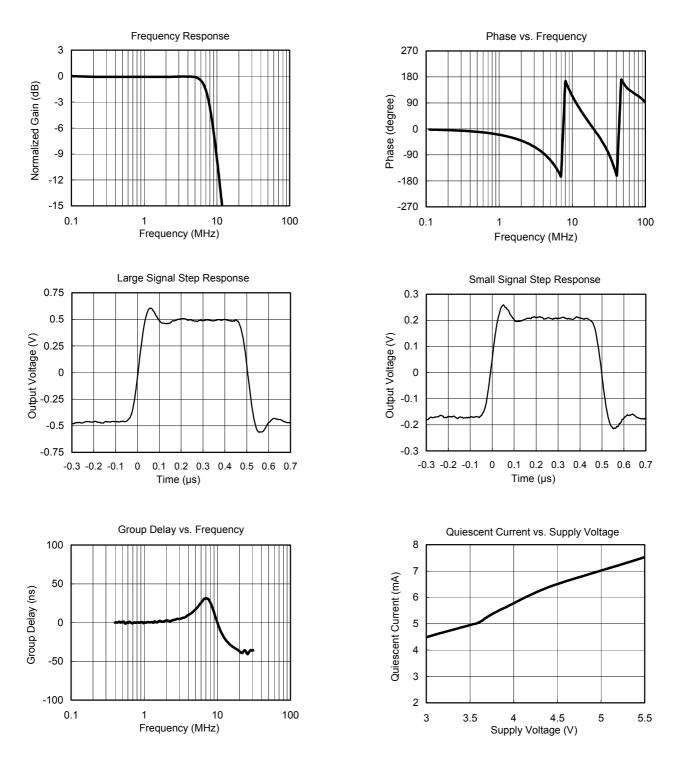
SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the last datasheet.

PIN CONFIGURATIONS (Top View)

SGM9111 8 OUT IN 7 V_{cc} NC 2 6 NC GND NC 4 5 NC NC = NO CONNECT SOIC-8 SGM9111 5 V_{cc} GND 1 GND 2 4 OUT IN 3 SC70-5

8MHz Rail-to-Rail Composite Video Driver with 6dB Gain

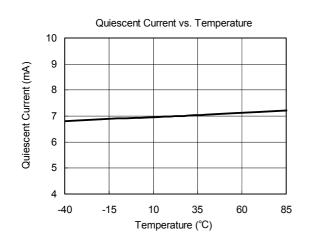
ELECTRICAL CHARACTERISTICS: V_{CC} = 5.0V (At R_L = 150 Ω connected to GND, V_{IN} = 1V_{PP}, and C_{IN} = 0.1 μ F, all outputs AC coupled with 220 μ F, referenced to 400kHz, unless otherwise noted.)

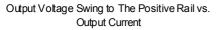

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
INPUT CHARACTERISTICS	·			•			
Output Lovel Shift Veltage (V/	$\lambda = 0 \lambda$	+25°C		352	480	- mV	
Output Level Shift Voltage (V _{OLS})	V _{IN} = 0V, no load	-40°C to +85°C			604	mv	
	L = 25mA	+25°C	-180	-109		mV	
Input Voltage Clamp (V _{CLAMP})	I _N = -3.5mA	-40°C to +85°C	-263				
Clamp Charge Current	V _{IN} = V _{CLAMP} -100mV	+25°C	-6.0	-4.8		mA	
Clamp Charge Current		-40°C to +85°C	-6.3				
Clamp Discharge Current	V _{IN} = 500mV	+25°C		1.8	3.0	μA	
Shamp Discharge Surrent	VIN - 500111	-40°C to +85°C			3.2	μΛ	
Voltage Gain (A _v)	R _L = 150Ω	+25°C	5.6	6	6.4	- dB	
		-40°C to +85°C	5.5		6.5		
OUTPUT CHARACTERISTICS				-			
Output Voltage High Swing	V_{IN} = 3.0V, R_L = 150 Ω to GND	+25°C	4.6	4.78		V	
		-40°C to +85°C	4.5				
	V_{IN} = 0.5V, Out short to GND through 10 Ω	+25°C	90	120		mA	
Output Short-Circuit Current (Isc)	$V_{\rm IN} = 0.5V$, Out short to GND through 10Ω	-40°C to +85°C	80			- mA	
	$V_{\rm IN}$ = 1.5V, Out short to $V_{\rm CC}$ through 10 Ω	+25°C		-124	-100	mA	
		-40°C to +85°C			-88		
POWER SUPPLY							
Operating Voltage Range			3.0		5.5	V	
Power Supply Rejection Ratio (PSRR)	V _{cc} = 3.5 V to 5.0 V	+25°C	45	51		dB	
		-40°C to +85°C	42			UB	
Quiescent Current (I _Q)	V _{IN} = 0.5V	+25°C		7.0	9.5	mA	
		-40°C to +85°C			10.1	IIIA	
DYNAMIC PERFORMANCE						T	
-0.1dB Bandwidth				5.56		MHz	
-3dB Bandwidth				7.76		MHz	
Filter Response (Normalized Gain)	f _{IN} = 27MHz			42.4		dB	
Slew Rate	2V Output Step, 80% to 20%			34.8		V/µs	
Differential Gain Error (DG)	PAL DC coupled			0.53		%	
	PAL AC coupled			0.47		%	
Differential Phase Error (DP)	PAL DC coupled			1.30		٥	
	PAL AC coupled			1.47		0	
Group Delay Variation (D/DT)	Difference between 400kHz and 6.5MHz			30.3		ns	
Fall Time	2V Output Step, 80% to 20%			34.5		ns	
Rise Time	2V Output Step, 80% to 20%			35.7		ns	

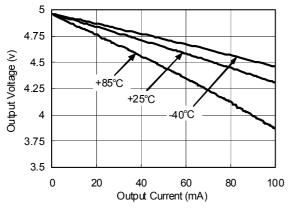
8MHz Rail-to-Rail Composite Video Driver with 6dB Gain

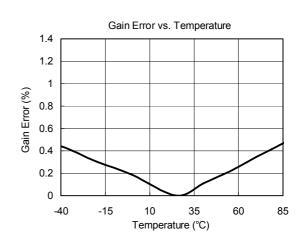
TYPICAL PERFORMANCE CHARACTERISTICS

At V_{CC} = 5V, T_A = +25°C, R_L = 150 Ω , all outputs AC coupled with 220µF, unless otherwise noted.

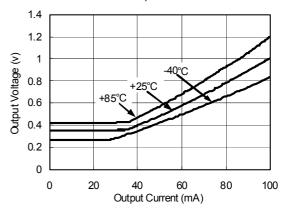



SG Micro Limited www.sg-micro.com


8MHz Rail-to-Rail Composite Video Driver with 6dB Gain


TYPICAL PERFORMANCE CHARACTERISTICS

At V_{CC} = 5V, T_A = +25°C, R_L = 150 Ω , all outputs AC coupled with 220µF, unless otherwise noted.



Output Voltage Swing to The Negative Rail vs. Output Current

APPLICATIONS INFORMATION

Functional Description

SGM9111 operates from a single 3.0V to 5.5V supply. In application, SGM9111 is a fully integrated solution for filtering and buffering SDTV signals in front of video decoder or behind video encoder. For example, SGM9111 can replace a passive LC filter and a amplifier driver at CVBS side in set-top box and DVD player, this solution can help you save PCB size and production cost, it also improves video signal performance comparing with traditional design using discrete components. SGM9111 features a DC-coupled input buffer, 5-pole low-pass filter to eliminate out-of-band noise of video encoder, and a gain of +6dB in the output amplifier to drive 75 Ω load. The AC or DC-coupled input buffer eliminates sync crush, droop, and field tilt. The output of SGM9111 also can be DC-coupled or AC-coupled.

Input Considerations

Besides AC coupling, the SGM9111 inputs also can be DC-coupled. In DC coupling application, No input coupling capacitors are needed because the amplitude of input video signal from DAC includes ground and extends up to 1.4V, then SGM9111 can be directly connected to the output of a single-supply, current-output DAC without any external bias network. Some time, if DAC's output level exceeds the range of 0V to 1.4V, or SGM9111 is driven by an unknown external source or a SCART switch which has its own clamping circuit, AC coupling is needed in such applications.

Output Considerations

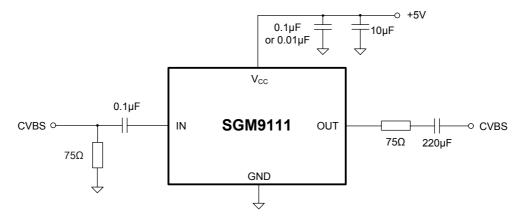
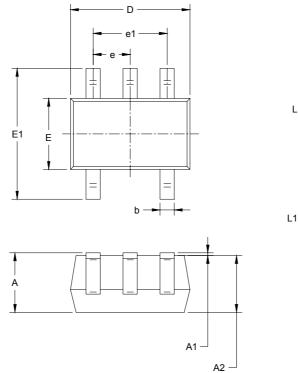
The SGM9111 outputs can be DC-coupled or AC-coupled. When 0V is input, the SGM9111 output voltage is 340mV typically. In DC coupling design, one 75Ω resistor is used to connect SGM9111's output pin with external load directly, this serial back-termination resistor is used to match the impedance of the transmission line between SGM9111 and external load to cancel the signal reflection. The SGM9111 outputs can sink and source current allowing the device to be AC-coupled with external load, in AC coupling, 220μ F at least capacitor will be used in order to eliminate field tilt.

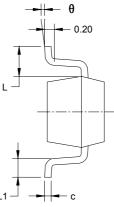
Power-Supply Bypassing and Layout

Correct power supply bypassing is very important for optimizing video performance in design. One $0.1\mu\text{F}$ and one $10\mu\text{F}$ capacitors are always used to Bypass V_{CC} pin of SGM9111, please place these two capacitors as close to the SGM9111 output pin as possible, a large ground plane is also needed to ensure optimum performance. The input and output termination resistors should be placed as close to the related pin of SGM9111 as possible to avoid performance degradation. The PCB traces at the output side should have 75 Ω characteristic impedance in order to match the 75 Ω characteristic impedance cable connecting external load. In design, please keep the board trace at the inputs and outputs of the SGM9111 as short as possible to minimize the parasitic stray capacitance and noise pickup.

8MHz Rail-to-Rail Composite Video Driver with 6dB Gain

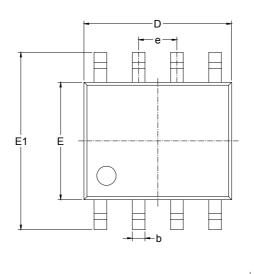
TYPICAL APPLICATION DIAGRAM

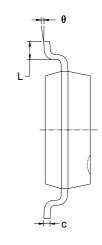



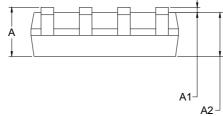

Figure 1. AC Coupling Application Schematic

PACKAGE OUTLINE DIMENSIONS

SC70-5




Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006 0.014		
с	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.65 TYP		0.026 TYP		
e1	1.300 BSC		0.051 BSC		
L	0.525 REF		0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	



PACKAGE OUTLINE DIMENSIONS

SOIC-8

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	МАХ	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

