

SGM42600 Dual H-Bridge Motor Driver

GENERAL DESCRIPTION

The SGM42600 provides a dual bridge motor driver solution for battery-powered toys, printers and other low-voltage or battery-powered motion control applications. The device has two H-bridge drivers, and can drive two DC brush motors, a bipolar stepper motor, solenoids, or other inductive loads.

The output driver block of each H-bridge consists of N-channel power MOSFETs configured as an H-bridge to drive the motor windings. Each H-bridge includes circuitry to regulate or limit the winding current.

With proper PCB design, each H-bridge of the SGM42600 is capable of driving up to 1.5A RMS (or DC) continuously, at +25°C with a $V_{\rm CC}$ supply of 5V. It can support peak currents of up to 2A per H-bridge. Current capability is reduced slightly at lower $V_{\rm CC}$ voltages.

Internal shutdown functions with a fault output pin are provided for H-bridge over-current protection, power supply under-voltage lockout, charge pump under-voltage lockout and over-temperature protection. If one of fault conditions happens, the SGM42600 would prevent each input PWM signal from driving H-bridge and H-bridge is in high impedance status.

A low-power sleep mode is also provided to save power dissipation. If nSLEEP is low, the SGM42600 will enter into sleep state.

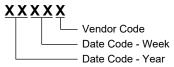
The SGM42600 is available in Green TQFN-4×4-16L and TSSOP-16 (Exposed Pad) packages. It operates over an ambient temperature range of -40°C to +125°C.

FEATURES

- Dual H-Bridge Current-Controlled Motor Driver Capable of Driving Two DC Motors or One Stepper Motor
- Low MOSFET On-Resistance: HS + LS 410mΩ
- Output Current 1.5A RMS, 2A Peak per H-Bridge (at V_{cc} = 5V, +25°C)
- 2.7V to 24V Wide Power Supply Voltage Range
- PWM Winding Current Regulation/Limiting
- Fault Indication Output
- Available in Green TSSOP-16 (Exposed Pad) and TQFN-4×4-16L Packages

APPLICATIONS

Battery-Powered Toys
POS Printers
Video Security Cameras
Office Automation Machines
Gaming Machines
Robotics



PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM42600 -	TSSOP-16 (Exposed Pad)	-40°C to +125°C	SGM42600XPTS16G/TR	SGM42600 XPTS16 XXXXX	Tape and Reel, 4000
	TQFN-4×4-16L	-40°C to +125°C	SGM42600XTQE16G/TR	SGM42600 XTQE16 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

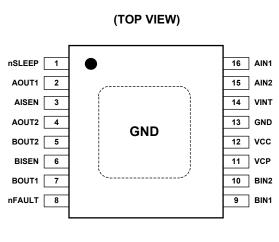
0.3V to 28V
0.3V to 6V
0.3V to 0.5V
. Internally limited
49°C/W
52°C/W
+150°C
65°C to +150°C
+260°C
5000V
300V
1000V

RECOMMENDED OPERATING CONDITIONS

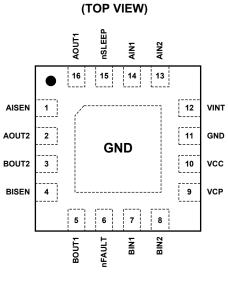
Power Supply Voltage Range, V _{CC}	2.7V to 24V
Digital Input Pin Voltage Range	0.3V to 5.5V
AISEN/BISEN Pin Voltage Range	0.3V to 0.5V
Continuous DC/RMS Output Current per Bridg	ge1.5A
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATIONS

TSSOP-16 (Exposed Pad)

TQFN-4×4-16L

PIN DESCRIPTION

NAME	I/O	FUNCTION
AOUT1	0	Bridge A Output 1. Connect to motor winding A.
AOUT2	0	Bridge A Output 2. Connect to motor winding A.
BOUT1	0	Bridge B Output 1. Connect to motor winding B.
BOUT2	0	Bridge B Output 2. Connect to motor winding B.
AIN1	I	Bridge A Input 1. Logic input controls state of AOUT1. Internal pull-down.
AIN2	I	Bridge A Input 2. Logic input controls state of AOUT2. Internal pull-down.
BIN1	I	Bridge B Input 1. Logic input controls state of BOUT1. Internal pull-down.
BIN2	I	Bridge B Input 2. Logic input controls state of BOUT2. Internal pull-down.
nSLEEP	I	Sleep Mode Input. Logic high to enable device; logic low to enter low-power sleep mode and reset all internal logic. Internal pull-down.
nFAULT	OD	Fault Output. Logic low when in fault condition (over-temperature, over-current, power supply under-voltage, charge pump under-voltage).
AISEN	Ю	Bridge A Ground or I _{SENSE} . Connect to current sense resistor for bridge A, or GND if current control not needed.
BISEN	Ю	Bridge B Ground or I_{SENSE} . Connect to current sense resistor for bridge B, or GND if current control not needed.
VCP	Ю	High-side Gate Drive Voltage. Connect a 0.01µF, 30V (MIN) ceramic capacitor to VCC.
VCC	Р	Device Power Supply. Connect to motor supply. A 10µF (MIN) ceramic bypass capacitor to GND is recommended.
GND	G	Ground. Both the GND pin and device exposed pad must be connected to ground.
VINT	_	Internal Supply Bypass. Bypass to GND with 2.2µF, 6.3V capacitor.
Exposed Pad	G	Exposed Pad. Exposed pad is internally connected to GND. Connect it to a large ground plane to maximize thermal performance; not intended as an electrical connection point.

NOTE: I = input; O = output; IO = input or output; OD = open-drain output; G = ground; P = power for the circuit.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V, Full = -40^{\circ}C \text{ to } +125^{\circ}C.$ Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
POWER SUPPLIES			•					
VCC Operating Supply Voltage	Vcc		Full	2.7		24	V	
VCC Operating Supply Current	I _{VCC}	xIN1 = 0V, xIN2 = 0V	+25°C		1.7	2.3	mA	
VCC Sleep Mode Supply Current	Ivccq		+25°C		0.7	1.6	μΑ	
VCC Under-Voltage Lockout Voltage	V_{UVLO}		+25°C		2.3	2.4	V	
VCC Under-Voltage Lockout Voltage Hysteresis	V _{HYS}		+25°C		100		mV	
LOGIC LEVEL INPUTS								
Input Low Voltage	V _{IL}	nSLEEP, V _{CC} = 2.7V to 24V	Full			0.7	V	
	- 112	All other pins, V _{CC} = 2.7V to 24V	Full			0.7	-	
Input High Voltage	V _{IH}	nSLEEP, $V_{CC} = 2.7V$ to 24V	Full	2.3			V	
input riigit voitago	V IH	All other pins, $V_{CC} = 2.7V$ to 24V	Full	2.1			v	
Input Hysteresis	V _{HYS}		+25°C		200		mV	
Input Pull Down Registance	В	nSLEEP	+25°C		520			
input Fuii-Down Resistance	R _{PD}	All except nSLEEP	+25°C		160		kΩ	
Input Low Current	I _{IL}	V _{IN} = 0V	Full	-1		1	μΑ	
Input High Current	I _{IH}	V _{IN} = 5V, nSLEEP	Full		10	13	μА	
input High Current		V _{IN} = 5V, all except nSLEEP	Full		32	43		
Input Deglitch Time	t _{DEG}	V _{IN} = 5V	+25°C		460		ns	
nFAULT OUTPUT (OPEN-DRAIN OUTPUT)								
Output Low Voltage	V _{OL}	$V_{IN} = 2V, I_{O} = -5mA$	+25°C			0.6	V	
Output High-Impedance Leakage Current	I _{OH}		+25°C			1	μΑ	
H-BRIDGE FETS								
		$V_{CC} = 5V, I_{O} = 200mA$	+25°C		230			
LIC FET On Desigtance	В	$V_{CC} = 5V, I_{O} = 200mA$	Full			500	0	
ns re i On-Resistance	R _{DS(ON)}	$V_{CC} = 2.7V, I_O = 200mA$	+25°C		290		mΩ	
out Pull-Down Resistance out Low Current out High Current out Deglitch Time AULT OUTPUT (OPEN-DRAIN OUTPUT) atput Low Voltage atput High-Impedance Leakage Current BRIDGE FETS S FET On-Resistance f-State Leakage Current OTOR DRIVER arrent Control PWM Frequency se Time		$V_{CC} = 2.7V, I_{O} = 200mA$	Full			590		
		$V_{CC} = 5V, I_{O} = -200 \text{mA}$	+25°C		180			
LS FFT On Desigtance	В	$V_{CC} = 5V, I_{O} = -200 \text{mA}$	Full			440	m0	
LS FET Off-Resistance	R _{DS(ON)}	$V_{CC} = 2.7V, I_{O} = -200mA$	+25°C		230		mΩ	
		$V_{CC} = 2.7V, I_{O} = -200mA$	Full			490		
Off-State Leakage Current	I _{OFF}	V _{CC} = 24V, V _{OUT} = 0V	+25°C	-4		2	μΑ	
MOTOR DRIVER								
Current Control PWM Frequency	f_{PWM}	Internal PWM Frequency	+25°C		45		kHz	
Rise Time	t _R	$R_L = 16\Omega$ to GND, 10% to 90% V_{CC}	+25°C		80		ns	
Fall Time	t _F	$R_L = 16\Omega \text{ to } V_{CC},$ 90% to 10% V_{CC}	+25°C		50		ns	
Propagation Delay INx to OUTx	t _{PROP}		+25°C		1.2		μs	
Dead Time (1)	t _{DEAD}		+25°C		550		ns	

ELECTRICAL CHARACTERISTICS (continued)

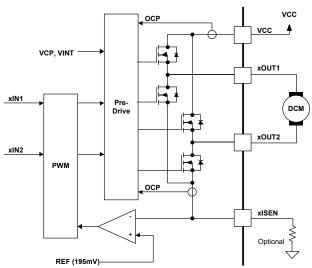
 $(V_{CC} = 5V, Full = -40^{\circ}C \text{ to } +125^{\circ}C.$ Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
PROTECTION CIRCUITS							
Over-Current Protection Trip Level	I _{OCP}		+25°C	2.5	3.7		Α
OCP Deglitch Time	t _{DEG}		+25°C		4.7		μs
Over-Current Protection Period	toce		+25°C		1.4		ms
Thermal Shutdown Temperature	T _{TSD}	Die Temperature			170		°C
Thermal Shutdown Temperature Hysteresis	T _{HYS}				20		°C
CURRENT CONTROL							
xISEN Trip Voltage	V_{TRIP}		+25°C	160	195	230	mV
Current Sense Blanking Time	t _{BLANK}		+25°C		4		μs
SLEEP MODE					•		
Start-Up Time	t _{WAKE}	nSLEEP inactive high to H-bridge on	Full			1.3	ms

NOTE: 1. Internal dead time. External implementation is not necessary.

FUNCTIONAL BLOCK DIAGRAM




Figure 1. SGM42600 Block Diagram

DETAILED DESCRIPTION

PWM Motor Drivers

The SGM42600 contains two identical H-bridge motor drivers with current-control PWM circuitry. A block diagram of the circuitry is shown below:

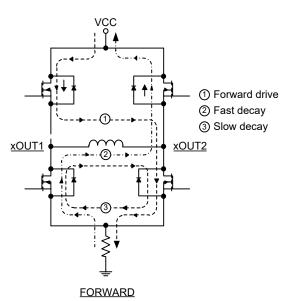
Figure 2. Motor Control Circuitry

Bridge Control and Decay Modes

The AIN1 and AIN2 input pins control the state of the AOUT1 and AOUT2 outputs; similarly, the BIN1 and BIN2 input pins control the state of the BOUT1 and BOUT2 outputs. Table 1 shows the logic.

Table 1. H-Bridge Logic

xIN1	xIN2	xOUT1	xOUT2	FUNCTION
0	0	Z	Z	Coast/Fast Decay
0	1	L	Н	Reverse
1	0	Н	L	Forward
1	1	L	L	Brake/Slow Decay


The inputs can also be used for PWM control of the motor speed. When controlling a winding with PWM, when the drive current is interrupted, the inductive nature of the motor requires that the current must continue to flow. This is called recirculation current. To handle this recirculation current, the H-bridge can operate in two different states, fast decay or slow decay. In fast decay mode, the H-bridge is disabled and recirculation current flows through the body diodes; in slow decay, the motor winding is shorted.

To PWM using fast decay, the PWM signal is applied to one xIN pin while the other is held low; to use slow decay, one xIN pin is held high.

Table 2. PWM Control of Motor Speed

xIN1	xIN2	FUNCTION
PWM	0	Forward PWM, Fast Decay
1	PWM	Forward PWM, Slow Decay
0	PWM	Reverse PWM, Fast Decay
PWM	1	Reverse PWM, Slow Decay

Figure 3 shows the current paths in different drive and decay modes.

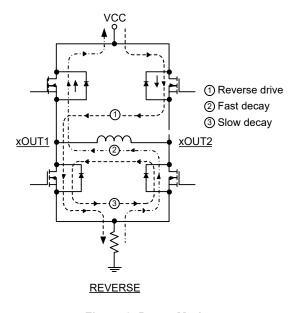


Figure 3. Decay Modes

DETAILED DESCRIPTION (continued)

Current Control

The current through the motor windings may be limited, or controlled, by a fixed-frequency PWM current regulation, or current chopping. For DC motors, current control is used to limit the start-up and stall current of the motor. For stepper motors, current control is often used at all times.

When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage and inductance of the winding. If the current reaches the current chopping threshold, the bridge disables the current until the beginning of the next PWM cycle. Note that immediately after the current is enabled, the voltage on the xISEN pin is ignored for a fixed period of time before enabling the current sense circuitry. This blanking time is fixed at 4µs. This blanking time also sets the minimum on time of the PWM when operating in current chopping mode.

The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor connected to the xISEN pins with a reference voltage. The reference voltage is fixed at 195mV. The chopping current is calculated in Equation 1.

$$I_{CHOP} = \frac{195\text{mV}}{R_{ISENSE}} \tag{1}$$

For example:

If a 1Ω sense resistor is used, the chopping current will be $195\text{mV}/1\Omega = 195\text{mA}$. Once the chopping current threshold is reached, the H-bridge switches to slow decay mode. Winding current is re-circulated by enabling both of the low-side FETs in the bridge. This state is held until the beginning of the next fixed-frequency PWM cycle.

Note that if current control is not needed, the xISEN pins should be connected directly to ground.

nSLEEP Operation

Driving nSLEEP low will put the device into a low power sleep state. In this state, the H-bridges are disabled, the gate drive charge pump is stopped, all internal logic is reset, and all internal clocks are stopped. All inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode, some time (up to 1.3ms) needs to pass before the motor driver becomes fully operational.

Over-Current Protection (OCP)

An analog current limit circuit on each FET limits the current through the FET by limiting the gate drive. If this analog current limit persists for longer than the OCP deglitch time, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. The driver will be re-enabled after the OCP retry period ($t_{\rm OCP}$) has passed. nFAULT becomes high again at this time. If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal operation resumes and nFAULT remains deasserted. Please note that only the H-bridge in which the OCP is detected will be disabled while the other bridge will function normally.

Over-current conditions are detected independently on both high and low side devices; i.e., a short across the motor winding will all result in an over-current shutdown. Note that over-current protection does not use the current sense circuitry used for PWM current control, so functions even without presence of the xISEN resistors.

Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. Once the die temperature has fallen to a safe level operation will automatically resume.

Under-Voltage Lockout (UVLO)

If at any time the voltage on the VCC pin falls below the under-voltage lockout threshold voltage, all circuitry in the device will be disabled, and all internal logic will be reset. Operation will resume when V_{CC} rises above the UVLO threshold. nFAULT is driven low in the event of an under-voltage condition.

APPLICATION INFORMATION

Maximum Output Current

In actual operation, the maximum output current achievable with a motor driver is a function of die temperature.

This in turn is greatly affected by ambient temperature and PCB design. Basically, the maximum motor current will be the amount of current that results in a power dissipation level that, along with the thermal resistance of the package and PCB, keeps the die at a low enough temperature to stay out of thermal shutdown.

The dissipation ratings given in the datasheet can be used as a guide to calculate the approximate maximum power dissipation that can be expected to be possible without entering thermal shutdown for several different PCB constructions. However, for accurate data, the actual PCB design must be analyzed via measurement or thermal simulation.

Power Dissipation

Power dissipation in the SGM42600 is dominated by the DC power dissipated in the output FET resistance. There is additional power dissipated due to PWM switching losses, which are dependent on PWM frequency, rise and fall times, and VCC power supply voltage. These switching losses are typically on the order of 10% to 30% of the DC power dissipation.

The DC power dissipation of one H-bridge can be roughly estimated by Equation 2.

$$\boldsymbol{P}_{\text{TOT}} = (\boldsymbol{HS} - \boldsymbol{R}_{\text{DS(ON)}} \times \boldsymbol{I}_{\text{OUT(RMS)}}^{2}) + (\boldsymbol{LS} - \boldsymbol{R}_{\text{DS(ON)}} \times \boldsymbol{I}_{\text{OUT(RMS)}}^{2})$$

where P_{TOT} is the total power dissipation, HS - $R_{DS(ON)}$ is the resistance of the high side FET, LS - $R_{DS(ON)}$ is the resistance of the low side FET, and $I_{OUT(RMS)}$ is the RMS output current being applied to the motor.

Note that $R_{\text{DS}(\text{ON})}$ increases with temperature, so as the device heats, the power dissipation increases. This must be taken into consideration when sizing the heatsink.

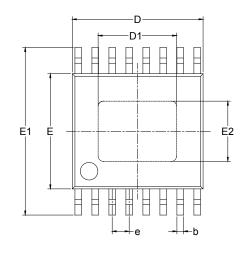
Thermal Protection

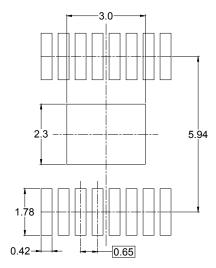
Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient heatsinking, or too high an ambient temperature.

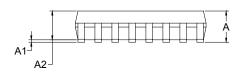
Heatsinking

The TSSOP-16 (Exposed Pad) and TQFN-4×4-16L packages use an exposed pad to remove heat from the device. For proper operation, this pad must be thermally connected to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane, this can be accomplished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs without internal planes, copper area can be added on either side of the PCB to dissipate heat. If the copper area is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and bottom layers.

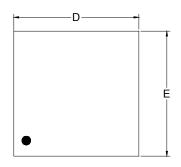
REVISION HISTORY

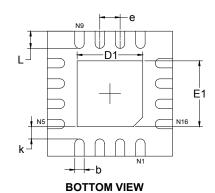

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

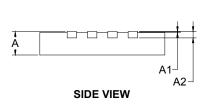

Changes from Original (APRIL 2017) to REV.A

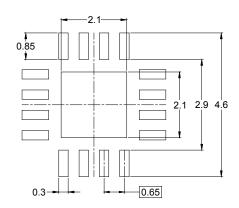

PACKAGE OUTLINE DIMENSIONS

TSSOP-16 (Exposed Pad)

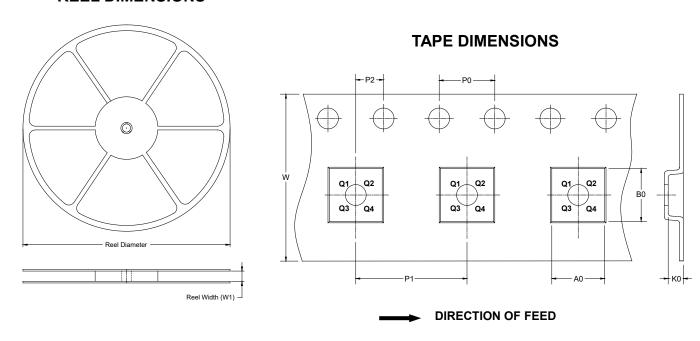

RECOMMENDED LAND PATTERN (Unit: mm)




Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α		1.100		0.043	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.000	0.031	0.039	
b	0.190	0.300	0.007	0.012	
С	0.090	0.090 0.200		800.0	
D	4.900	5.100	0.193	0.201	
D1	2.900	3.100	0.114	0.122	
E	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
E2	2.200 2.400		0.087	0.094	
е	0.650 BSC		0.026	BSC	
L	0.500 0.700		0.02	0.028	
Н	0.25	TYP	0.01	TYP	
θ	1°	7°	1°	7°	


PACKAGE OUTLINE DIMENSIONS TQFN-4×4-16L

TOP VIEW

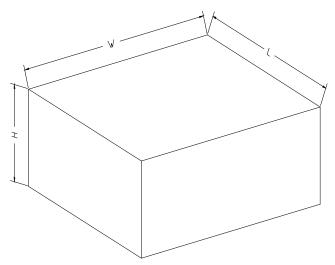


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	0.203 REF		REF	
D	3.900	4.100	0.154	0.161	
D1	2.000	2.200	0.079	0.087	
E	3.900	4.100	0.154	0.161	
E1	E1 2.000 2	2.200	0.079	0.087	
k	0.200) MIN	0.008	3 MIN	
b	0.250	0.350	0.010	0.014	
е	0.650	0.650 TYP		TYP	
L	0.450	0.650	0.018	0.026	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-16 (Exposed Pad)	13"	12.4	6.90	5.60	1.20	4.0	8.0	2.0	12.0	Q1
TQFN-4×4-16L	13"	12.4	4.30	4.30	1.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13"	386	280	370	5	200002