

# SGM4916 88mW, Capless, Stereo Headphone Amplifier with Shutdown

#### GENERAL DESCRIPTION

The SGM4916 stereo headphone amplifier is designed for portable equipment where board space is at a premium. The SGM4916 uses capless architecture to produce a ground-referenced output from a single power supply, eliminating the need for large DC-blocking capacitors for output, saving cost, board space, and component height. Additionally, for SGM4916B, the gain is set internally (-1.5V/V), further reducing component count. For SGM4916A, the gain can be adjusted by external feedback resistors.

The SGM4916 delivers up to 88mW per channel into a  $32\Omega$  load and has low 0.034% THD+N. A -70dB power supply rejection ratio (PSRR) at 217Hz allows this device to operate from noisy digital supplies without an additional linear regulator. Comprehensive click-and-pop circuitry suppresses audible clicks and pops on startup and shutdown.

The SGM4916 operates from a single 2.7V to 5.5V supply, consumes only 2.7mA supply current, has short-circuit and thermal-overload protections, and is specified over the extended -40°C to +85°C temperature range. The SGM4916 is available in a Green TQFN-3×3-12L package.

#### **FEATURES**

- SGM4916A: External Feedback Gain Network
  SGM4916B: Fixed -1.5V/V Gain
- No Bulky DC-Blocking Capacitors Required
- Ground-Referenced Outputs Eliminate DC-Bias Voltage on Headphone Ground Pin
- No Degradation of Low-Frequency Response Due to Output Capacitors
- 88mW into 32Ω Load from 5V Power Supply at THD+N = 0.1% (TYP, per Channel)
- Low 0.034% THD+N
- High PSRR (-70dB at 217Hz)
- Integrated Click-and-Pop Suppression
- 2.7V to 5.5V Single Supply Operation
- Low Quiescent Current (2.7mA at V<sub>DD</sub> = 5V)
- Shutdown Control
- Short-Circuit and Thermal-Overload Protections
- Undervoltage Lockout Function
- -40°C to +85°C Operating Temperature Range
- Available in Green TQFN-3×3-12L Package

#### **APPLICATIONS**

Notebook PCs

Cellular Phones

**PDAs** 

MP3 Players

**Smart Phones** 

Portable Audio Equipment

## PACKAGE/ORDERING INFORMATION

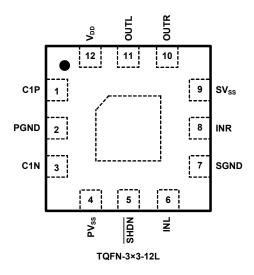
| MODEL    | ORDER NUMBER       | GAIN<br>(V/V) | PACKAGE<br>DESCRIPTION | MARKING<br>INFORMATION | PACKAGE<br>OPTION   |  |
|----------|--------------------|---------------|------------------------|------------------------|---------------------|--|
| SGM4916A | SGM4916AYTQJ12G/TR | ADJ           | TQFN-3×3-12L           | 4916AQ<br>XXXXX        | Tape and Reel, 3000 |  |
| SGM4916B | SGM4916BYTQJ12G/TR | -1.5          | TQFN-3×3-12L           | 4916BQ<br>XXXXX        | Tape and Reel, 3000 |  |

NOTE: XXXXX = Date Code and Vendor Code.

### ABSOLUTE MAXIMUM RATINGS

| PV <sub>SS</sub> to SV <sub>SS</sub>                  | 0.3V to +0.3V               |
|-------------------------------------------------------|-----------------------------|
| PGND to SGND                                          | 0.3V to +0.3V               |
| V <sub>DD</sub> to PGND or SGND                       | 0.3V to +6V                 |
| PV <sub>SS</sub> and SV <sub>SS</sub> to PGND or SGND | 6V to +0.3V                 |
| IN to SGND (SV <sub>SS</sub> - 0.                     | $3V$ ) to $(V_{DD} + 0.3V)$ |
| SHDN to SGND                                          | 0.3V to $(V_{DD} + 0.3V)$   |
| OUT to SGND(SV <sub>SS</sub> - 0.                     | $3V$ ) to $(V_{DD} + 0.3V)$ |
| C1P to PGND0                                          | .3V to $(V_{DD} + 0.3V)$    |
| C1N to PGND(P\                                        | $I_{SS}$ - 0.3V) to +0.3V   |
| Output Short Circuit to GND or V <sub>DD</sub>        | Continuous                  |
| Junction Temperature                                  | 150°C                       |
| Operating Temperature Range                           | 40°C to +85°C               |
| Storage Temperature Range                             | 65°C to +150°C              |
| Lead Temperature (Soldering, 10s)                     | 260°C                       |
| ESD Susceptibility                                    |                             |
| HBM (Output pins to Supply and Ground pin             | s)3000V                     |
| MM                                                    | 200V                        |

#### NOTE:


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **CAUTION**

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

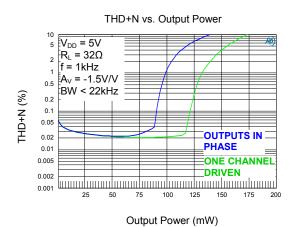
# PIN CONFIGURATION (TOP VIEW)

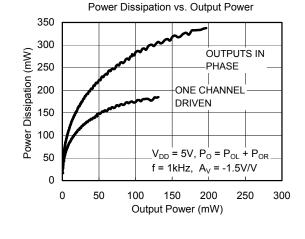


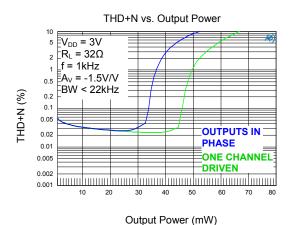
# **PIN DESCRIPTIONS**

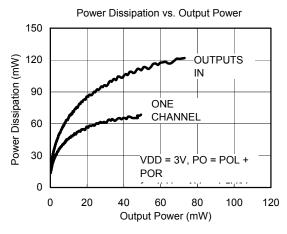
| PIN            | NAME                                                                      | DESCRIPTION                                                                                      |  |  |
|----------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| 1              | C1P                                                                       | Flying Capacitor Positive Terminal. Connect a 1µF ceramic capacitor from C1P to C1N.             |  |  |
| 2              | PGND                                                                      | Power Ground. Connect to SGND.                                                                   |  |  |
| 3              | C1N                                                                       | Flying Capacitor Negative Terminal. Connect a 1µF ceramic capacitor from C1P to C1N.             |  |  |
| 4              | PVss                                                                      | Charge-Pump Output. Connect to SV <sub>SS</sub> and bypass with a 1µF ceramic capacitor to PGND. |  |  |
| 5              | SHDN                                                                      | Active-Low Shutdown Input.                                                                       |  |  |
| 6              | INL                                                                       | Left-Channel Input.                                                                              |  |  |
| 7              | SGND                                                                      | Signal Ground. Connect to PGND.                                                                  |  |  |
| 8              | INR                                                                       | Right-Channel Input.                                                                             |  |  |
| 9              | SV <sub>SS</sub> Amplifier Negative Supply. Connect to PV <sub>SS</sub> . |                                                                                                  |  |  |
| 10             | OUTR                                                                      | Right-Channel Output.                                                                            |  |  |
| 11             | OUTL                                                                      | Left-Channel Output.                                                                             |  |  |
| 12             | V <sub>DD</sub>                                                           | Positive Power-Supply Input. Bypass with a 1µF capacitor to SGND.                                |  |  |
| Exposed Paddle | _                                                                         | Exposed Paddle. Can be connected to GND or left floating.                                        |  |  |

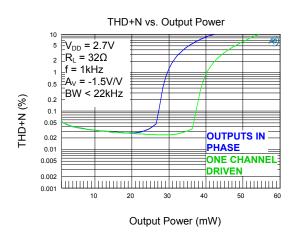
# **ELECTRICAL CHARACTERISTICS**

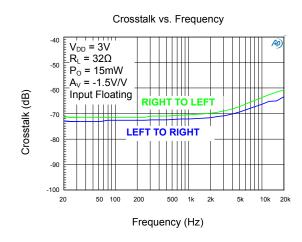

 $(V_{DD}$  = 5V, PGND = SGND = 0V,  $\overline{SHDN}$  = 5V, C1 = C2 = 1 $\mu$ F, R<sub>L</sub> =  $\infty$ ; for SGM4916A, gain = -1.5V/V (R<sub>IN</sub> = 20k $\Omega$ , R<sub>F</sub> = 30k $\Omega$ ); for SGM4916B, gain = -1.5V/V (internally set). T<sub>A</sub> = +25°C, unless otherwise noted.) (1)


| PARAMETER                             | SYMBOL            | CONDITIONS                                                                                         |                                                        |              | MIN   | TYP   | MAX   | UNITS |
|---------------------------------------|-------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|-------|-------|-------|-------|
| GENERAL                               | •                 |                                                                                                    |                                                        |              |       |       |       | •     |
| Supply Voltage Range                  | $V_{DD}$          |                                                                                                    |                                                        |              | 2.7   |       | 5.5   | V     |
| Quiescent Supply Current              | I <sub>DD</sub>   |                                                                                                    |                                                        |              |       | 2.7   | 3.7   | mA    |
| Shutdown Supply Current               | I <sub>SHDN</sub> | SHDN = SGNI                                                                                        | D = PGND                                               |              |       | 0.01  | 8     | μA    |
| SHDN Input Logic High                 | V <sub>IH</sub>   |                                                                                                    |                                                        |              | 1.2   |       |       | V     |
| SHDN Input Logic Low                  | V <sub>IL</sub>   |                                                                                                    |                                                        |              |       |       | 0.4   | V     |
| SHDN to Full Operation Time           | t <sub>SON</sub>  |                                                                                                    |                                                        |              |       | 3.1   |       | ms    |
| AMPLIFIERS                            | •                 |                                                                                                    |                                                        |              |       | •     | •     |       |
| Voltage Gain                          | A <sub>V</sub>    | SGM4916B                                                                                           |                                                        |              | -1.57 | -1.5  | -1.43 | V/V   |
| Gain Matching                         | $\Delta A_{V}$    | SGM4916B                                                                                           |                                                        |              |       | 0.23  |       | %     |
| Output Offset Voltage                 | V <sub>os</sub>   | Input AC-couple                                                                                    | ed to ground                                           |              | -6    | 1.2   | 6     | mV    |
| Input Impedance                       | R <sub>IN</sub>   | SGM4916B, me                                                                                       | M4916B, measured at INL and INR                        |              | 12.5  | 14.3  | 16.5  | kΩ    |
|                                       | PSRR              | SGM4916B,<br>C3 = 0.1µF                                                                            | f = 217Hz, V <sub>RIPPLE</sub> = 200mV <sub>P-P</sub>  |              |       | -70   |       | dB    |
| Power Supply Rejection Ratio          |                   |                                                                                                    | f = 1kHz, V <sub>RIPPLE</sub> = 200mV <sub>P-P</sub>   |              |       | -71   |       |       |
|                                       |                   |                                                                                                    | f = 20kHz, V <sub>RIPPLE</sub> = 200mV <sub>P-P</sub>  |              |       | -70   |       |       |
|                                       | Роит              | R <sub>L</sub> = 32Ω,<br>f = 1kHz                                                                  | V <sub>DD</sub> = 5.0V                                 | THD+N = 0.1% |       | 88    |       | mW    |
|                                       |                   |                                                                                                    |                                                        | THD+N = 1%   |       | 98    |       |       |
| 0.1.15                                |                   |                                                                                                    | V <sub>DD</sub> = 3.0V                                 | THD+N = 0.1% |       | 33    |       |       |
| Output Power                          |                   |                                                                                                    |                                                        | THD+N = 1%   |       | 36    |       |       |
|                                       |                   |                                                                                                    | V <sub>DD</sub> = 2.7V                                 | THD+N = 0.1% |       | 26    |       |       |
|                                       |                   |                                                                                                    |                                                        | THD+N = 1%   |       | 29    |       |       |
| Tatalilla and a Ristoria Black Nation | TUD.N             | $R_L = 32\Omega$ , $P_{OUT}$                                                                       | = 30mW, f <sub>IN</sub> = 1                            | kHz          |       | 0.034 |       | 0/    |
| Total Harmonic Distortion Plus Noise  | THD+N             | $R_L = 32\Omega, P_{OUT}$                                                                          | $R_L = 32\Omega$ , $P_{OUT} = 50$ mW, $f_{IN} = 1$ kHz |              |       | 0.025 |       | - %   |
| Signal-to-Noise Ratio                 | SNR               | $R_L = 32\Omega$ , $P_{OUT} = 50$ mW, BW = 20Hz to 22kHz                                           |                                                        |              | 103   |       | dB    |       |
| Capacitive Drive                      | CL                | No sustained oscillations                                                                          |                                                        |              | 200   |       | pF    |       |
| Charge-Pump Oscillator Frequency      | f <sub>osc</sub>  |                                                                                                    |                                                        |              | 215   | 340   | 495   | kHz   |
| Crosstalk                             |                   | $V_{DD}$ = 3.0V, L to R, R to L, f = 10kHz, R <sub>L</sub> = 32 $\Omega$ , P <sub>OUT</sub> = 15mW |                                                        |              | 63    |       | dB    |       |
| Thermal Shutdown Threshold            |                   |                                                                                                    |                                                        |              |       | 142   |       | °C    |
| Thermal Shutdown Hysteresis           |                   |                                                                                                    |                                                        |              |       | 15    |       | °C    |

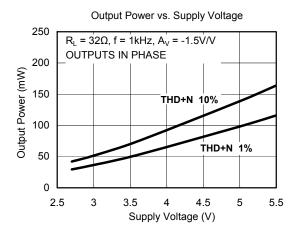

#### NOTE:

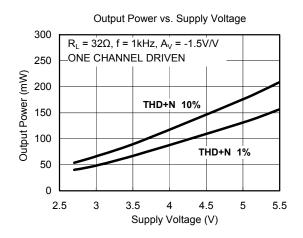

1. For  $C_{IN}$ , C1 and etc, please refer to the FUNCTIONAL DIAGRAM/TYPICAL APPLICATION CIRCUIT on page 8.

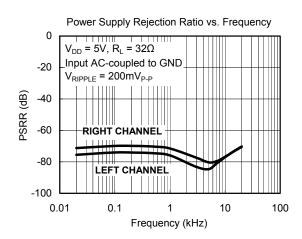

# TYPICAL PERFORMANCE CHARACTERISTICS

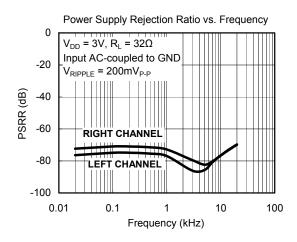


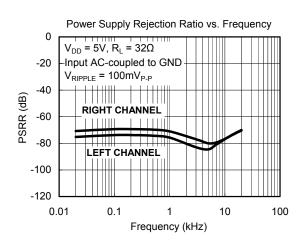


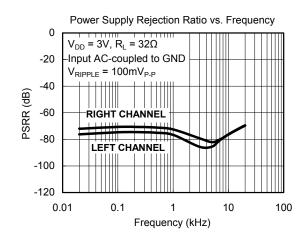



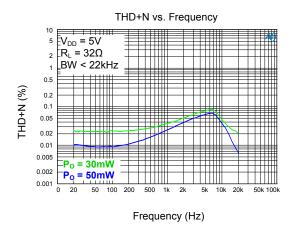



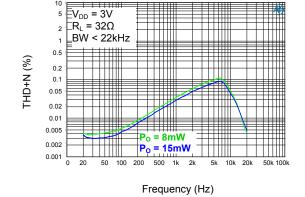


# TYPICAL PERFORMANCE CHARACTERISTICS

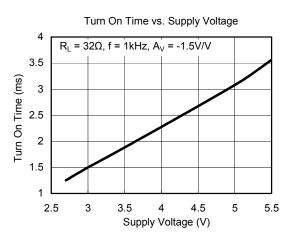




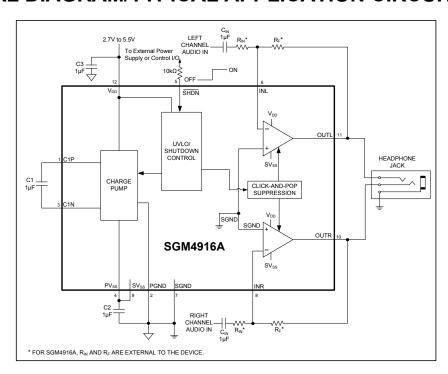


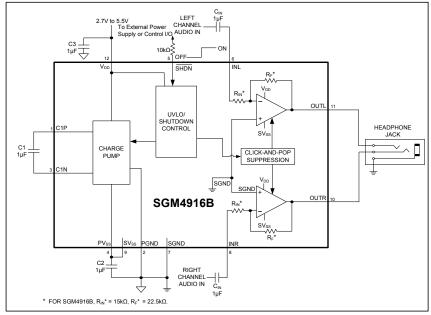




THD+N vs. Frequency


# **TYPICAL PERFORMANCE CHARACTERISTICS**





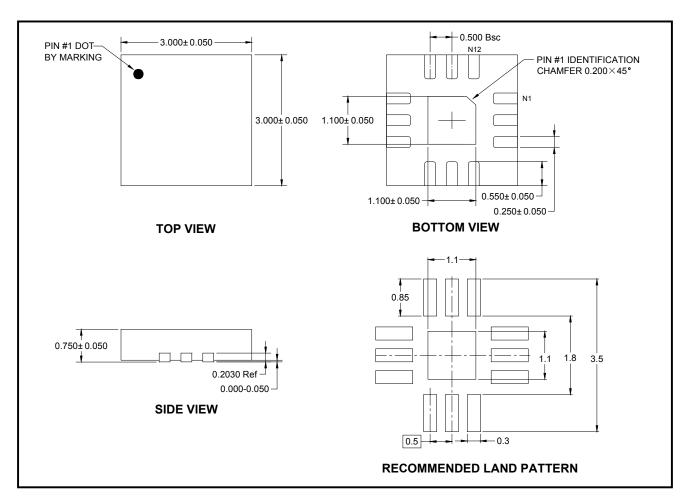



# FUNCTIONAL DIAGRAM/TYPICAL APPLICATION CIRCUIT





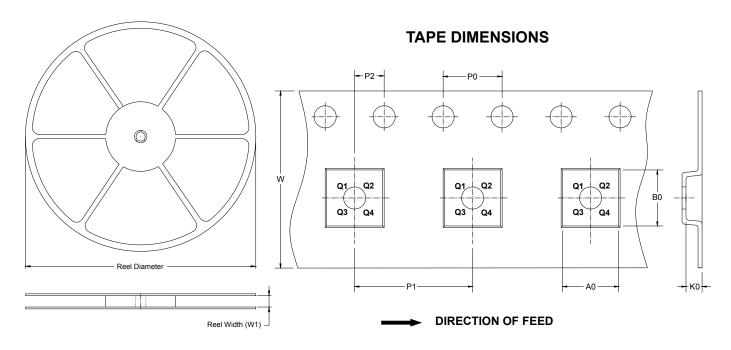
#### NOTES:


1. To ensure the normal operation of the device, decoupling capacitor (C3) must be placed as close to SGM4916 as possible. The loop length formed by C3,  $V_{DD}$  and GND should be no longer than 5mm, otherwise the device will not start up at high supply voltage. 2. In order to get good performance, it's important to select the right C1, C2 and C3 in application. All tests are performed with circuit set up with X5R and X7R capacitors. Capacitors having high dissipative loss, such as Y5V capacitor, may cause performance degradation and unexpected system behavior.

3. A  $10k\Omega$  resistor must be serially connected to  $\overline{SHDN}$  pin.



# PACKAGE OUTLINE DIMENSIONS

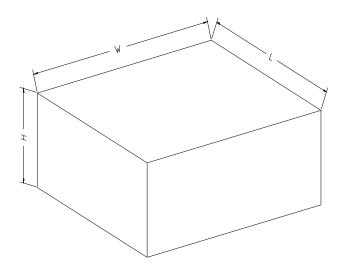

## **TQFN-3×3-12L**



NOTE: All linear dimensions are in millimeters.

# TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type | Reel Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|---------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| TQFN-3×3-12L | 13"           | 12.4                     | 3.30       | 3.30       | 1.10       | 4.00       | 8.00       | 2.00       | 12.00     | Q1               |

## **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |  |
|-----------|----------------|---------------|----------------|--------------|--|
| 13"       | 386            | 280           | 370            | 5            |  |