

SGM8902 Capless 2Vrms to 3Vrms Line Driver with Adjustable Gain

GENERAL DESCRIPTION

The SGM8902 is a 2Vrms to 3Vrms pop/click-free stereo line driver designed to allow the removal of the output DC-blocking capacitors for reduced component count and cost. The device is ideal for single supply electronics where size and cost are critical design parameters.

The SGM8902 is capable of driving 2Vrms into a $2.5 k\Omega$ load with 3.3V supply voltage. The device has differential inputs and uses external gain setting resistors that supports a gain range of $\pm 1 \text{V/V}$ to $\pm 10 \text{V/V}$. The use of external gain resistors also allows the implementation of a 2nd-order low pass filter to compliment DAC's and SOC converters. The SGM8902 has build-in shutdown control for pop/click-free on/off control.

Using the SGM8902 in audio products can reduce component count compared to traditional methods of generating a 2Vrms output. The SGM8902 doesn't require a power supply greater than 3.3V to generate a 5.6V_{PP} output, nor does the device require a split rail power supply. The SGM8902 integrates a charge pump to generate a negative supply rail that provides a clean, pop/click-free ground-biased 2Vrms output.

The SGM8902 is available in Green TSSOP-14 package. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Capless Structure
 Eliminates Pop/Clicks
 Eliminates Output DC-Blocking Capacitors
 Provides Flat Frequency Response from DC to 20kHz
- Low Noise and THD
 Typical SNR = 107dB
 Typical V_N = 8μVrms
 Typical THD+N = 0.001% (f = 1kHz)
- 2Vrms Output Voltage into 2.5kΩ Load with 3.3V Supply Voltage
- 3Vrms Output Voltage into 2.5kΩ Load with 5V Supply Voltage
- Differential Input

APPLICATIONS

Set-Top Box LCD TV Blue-Ray DVD-Players Home Theater in a Box

PACKAGE/ORDERING INFORMATION

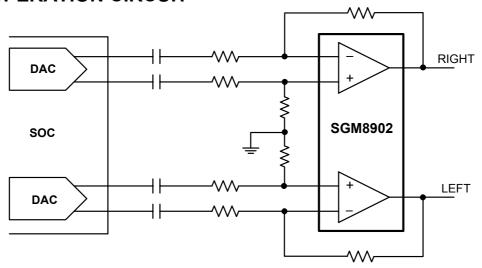
MODEL	PACKAGE DESCRIPTION	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM8902	TSSOP-14	SGM8902YTS14G/TR	SGM8902YTS14	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS

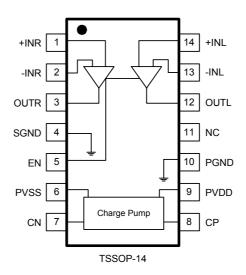
Supply Voltage	0.3V to 6V
Input Voltage	V_{SS} - 0.3V to V_{DD} + 0.3V
Minimum Load Impedance (R _L)	600Ω
EN to GND	0.3V to V _{DD} + 0.3V
Operating Temperature Range	40°C to +85°C
Junction Temperature	150°C

Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	
	260°C
ESD Susceptibility	
HBM	4000V
MM	400V

NOTE:


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

TYPICAL OPERATION CIRCUIT

PIN CONFIGURATION (TOP VIEW)

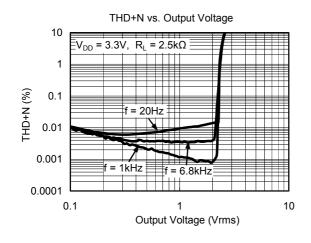
PIN DESCRIPTION

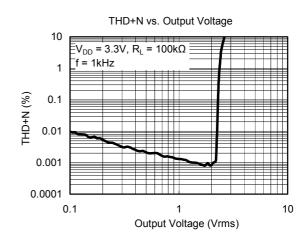
PIN	NAME	FUNCTION		
1	+INR	Right Channel OPAMP Positive Input.		
2	-INR	Right Channel OPAMP Negative Input.		
3 OUTR Right Channel OPAMP Output.		Right Channel OPAMP Output.		
4 SGND Signal Ground.		Signal Ground.		
5 EN Enable Input. Active high.		Enable Input. Active high.		
6	6 PVSS Negative Supply Voltage Output.			
7	CN	Charge Pump Flying Capacitor Negative Terminal.		
8 CP Charge Pump Flying Capacitor Positive Terminal.		Charge Pump Flying Capacitor Positive Terminal.		
9 PVDD Positive Supply.		Positive Supply.		
10 PGND Power Ground.		Power Ground.		
11	11 NC No Internal Connection.			
12	OUTL	Left Channel OPAMP Output.		
13	-INL	Left Channel OPAMP Negative Input.		
14	+INL Left Channel OPAMP Positive Input.			

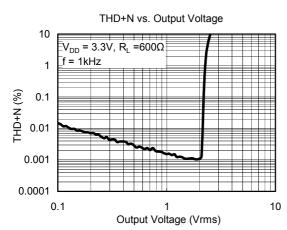
SGM8902

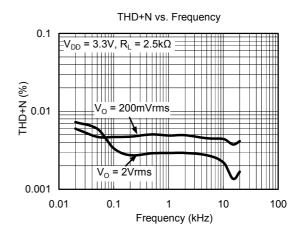
ELECTRICAL CHARACTERISTICS

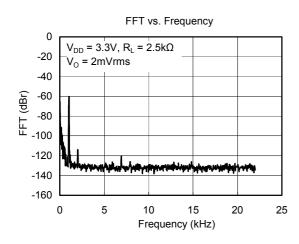
 $(T_A = 25$ °C, unless otherwise noted.)

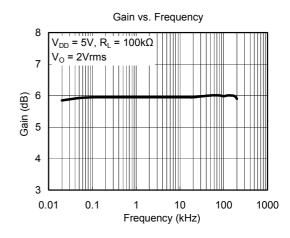

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
ELECTRICAL CHARACTERISTICS						
Output Offset Voltage (Vos)	V _{DD} = 3V to 5V		1.2	5	mV	
Supply Rejection Ratio (PSRR)	V _{DD} = 3V to 5V		97		dB	
High-Level Output Voltage (V _{OH})	$V_{DD} = 3.3V, R_L = 2.5k\Omega$	3.18			V	
Low-Level Output Voltage (V _{OL})	$V_{DD} = 3.3V, R_L = 2.5k\Omega$			-3.1	V	
High-Level Input Current (EN) (I _{IH})	$V_{DD} = 5V$, $V_{I} = V_{DD}$			1	μA	
Low-Level Input Current (EN) (I _{IL})	V _{DD} = 5V, V _I = 0V			1	μA	
	V_{DD} = 3.3V, No load, EN = V_{DD}	8.1	11.3			
Supply Current (I _{DD})	V_{DD} = 5V, No load, EN = V_{DD}		12	16	mA	
toput Offset Voltage ($ V_{OS} $) $V_{DD} = 3V$ to $5V$ pply Rejection Ratio (PSRR) $V_{DD} = 3V$ to $5V$ pply Rejection Ratio (PSRR) $V_{DD} = 3V$ to $5V$ pply Rejection Ratio (PSRR) $V_{DD} = 3.3V$, $R_L = 2.5k\Omega$ w-Level Output Voltage (V_{OL}) $V_{DD} = 3.3V$, $R_L = 2.5k\Omega$ pply Current (EN) ($ I_{Ir} $) $V_{DD} = 5V$, $V_1 = V_{DD}$ pply Current (I_{DD}) $V_{DD} = 5V$, $V_1 = 0V$ $V_{DD} = 5V$, $V_2 = 0V$ $V_{DD} = 5V$, $V_3 = 0V$ $V_3 = 5V$, $V_3 = 0V$ $V_3 = 5V$, $V_3 = 0V$ $V_3 = 0.33\mu$ F, $V_3 = 0.33\mu$ F		0.1	0.2			
OPERATING CHARACTERISTICS (V _{DD} =	3.3V, $R_L = 2.5k\Omega$, $C_{PUMP} = 0.33\mu F$, $C_{PVSS} = 0.33\mu F$, C_{IN}	= 10µF, R _{IN} = 1	10kΩ, R _{FB} =	20kΩ.) ⁽¹⁾		
	THD = 1%, V _{DD} = 3.3V, f = 1kHz	2.05				
Output Voltage (Outputs in Phase) (Vo)	THD = 1%, V _{DD} = 5V, f = 1kHz	3.05			Vrms	
	THD = 1%, V_{DD} = 5V, f = 1kHz, R_{L} = 100kΩ	3.1				
Total Harmonic Distortion Plus Noise	V _O = 2Vrms, f = 1kHz		0.001		0/	
(THD+N)	V _O = 2Vrms, f = 6.8kHz		0.004		%	
Crosstalk	V _O = 2Vrms, f = 1kHz		115		dB	
Output Current Limit (I _O)	V _{DD} = 3.3V		20		mA	
Input Resistor Range (R _{IN})		1	10	47	kΩ	
Feedback Resistor Range (R _{FB})		4.7	20	100	kΩ	
Slew Rate			8		V/µs	
Maximum Capacitive Load			220		pF	
Noise Output Voltage (V _N)	A-weighted, BW = 20kHz		8		μVrms	
Signal to Noise Ratio (SNR)			107		dB	
Unity Gain Bandwidth (G _{BW})			5.3		MHz	
Open-Loop Voltage Gain (A _{VO})			120		dB	
Charge Pump Frequency (F _{CP})		300	410	550	kHz	
SHUTDOWN PIN						
Input High Voltage (V _{INH})		1.2			V	
Input Low Voltage (V _{INL})				0.6	V	
RECOMMENDED OPERATING CONDITION	DNS					
DC Supply Voltage (V _{DD})		3		5.5	V	

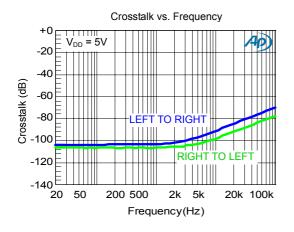

NOTE:

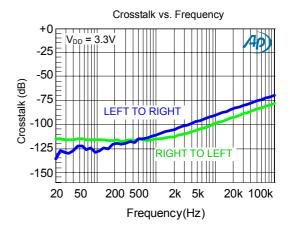

1. For C_{PUMP} , C_{PVSS} , C_{IN} , R_{IN} and etc, please refer to the APPLICATION CIRCUIT on page 7.

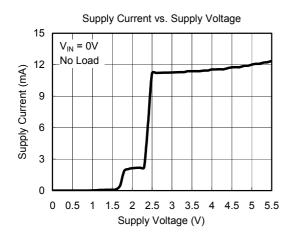

TYPICAL PERFORMANCE CHARACTERISTICS


 $V_{DD} = 3.3V, T_A = 25^{\circ}C, \ R_L = 2.5k\Omega, \ C_{PUMP} = 0.33\mu\text{F}, \ C_{PVSS} = 0.33\mu\text{F}, \ C_{IN} = 10\mu\text{F}, \ R_{IN} = 10k\Omega, \ R_{FB} = 20k\Omega, \ unless \ otherwise \ noted.$

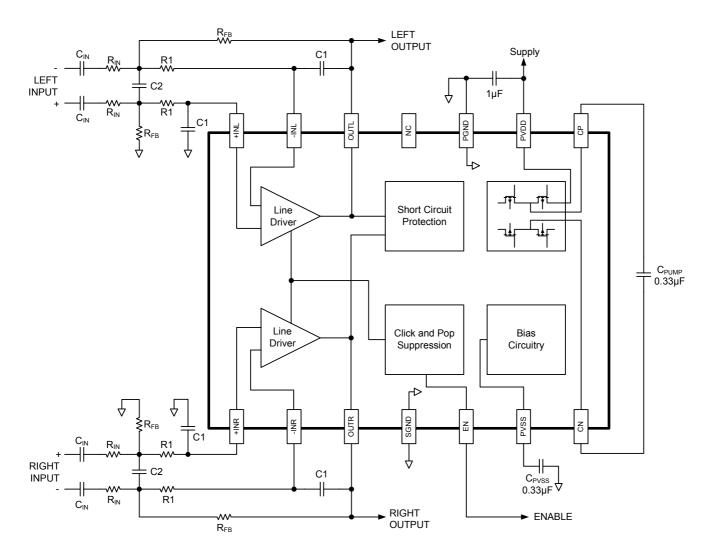








TYPICAL PERFORMANCE CHARACTERISTICS


 $V_{DD} = 3.3V, T_A = 25^{\circ}C, \ R_L = 2.5k\Omega, \ C_{PUMP} = 0.33\mu\text{F}, \ C_{PVSS} = 0.33\mu\text{F}, \ C_{IN} = 10\mu\text{F}, \ R_{IN} = 10k\Omega, \ R_{FB} = 20k\Omega, \ unless \ otherwise \ noted.$

APPLICATION CIRCUIT

 R_{IN} = 33k Ω , R_{FB} = 68k Ω , R1 = 100k Ω , C1 = 15pF, C2 = 150pF, C_{IN} = 1 μF Differential input, single-ended output, 2nd-order filter. 40kHz -3dB frequency, Gain 2.06.

APPLICATION INFORMATION

Decoupling Capacitors

The SGM8902 is a capless line driver amplifier that requires adequate power supply decoupling to ensure that the noise and total harmonic distortion (THD) are low. A good low equivalent-series-resistance (ESR) ceramic capacitor, typically $1\mu F$, placed as close as possible to the device V_{DD} lead, works best. Placing this decoupling capacitor close to the SGM8902 is important for the performance of the amplifier. For filtering lower frequency noise signals, a $10\mu F$ or larger capacitor placed near the audio power amplifier would also help, but it is not required in most applications because of the high PSRR of this device.

Gain Setting Resistors Ranges

The gain setting resistors, R_{IN} and R_{FB} , must be chosen so that noise, stability and input capacitor size of the SGM8902 is kept within acceptable limits. Voltage gain is defined as R_{FB} divided by R_{IN} .

Selecting values that are too low demands a large input AC coupling capacitor, C_{IN} . Selecting values that are too high increases the noise of the amplifier. Table 1 lists the recommended resistor values for different gain settings.

Table 1. Recommended Resistor Values

INPUT RESISTOR VALUE, R _{IN}	FEEDBACK RESISTOR VALUE, R _{FB}	DIFFERENTIAL INPUT GAIN	INVERTING INPUT GAIN	NON INVERTING INPUT GAIN
22kΩ	22kΩ	1.0V/V	-1.0V/V	2.0V/V
20kΩ	30kΩ	1.5V/V	-1.5V/V	2.5V/V
33kΩ	68kΩ	2.1V/V	-2.1V/V	3.1V/V
10kΩ	100kΩ	10.0V/V	-10.0V/V	11.0V/V

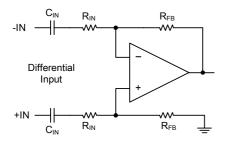


Figure 1. Differential Input

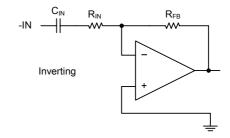


Figure 2. Inverting

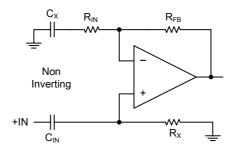


Figure 3. Non-Inverting

Input-Blocking Capacitors

DC input-blocking capacitors are required to be added in series with the audio signal into the input pins of the SGM8902. These capacitors block the DC portion of the audio source and allow the SGM8902 inputs to be properly biased to provide maximum performance. The input blocking capacitors also limit the DC-gain to one, limiting the DC-offset voltage at the output.

These capacitors form a high-pass filter with the input resistor, R_{IN} . The cutoff frequency is calculated using Equation 1. For this calculation, the capacitance used is the input-blocking capacitor and the resistance is the input resistor chosen from Table 1, then the frequency and/or capacitance can be determined when one of the two values are given.

$$fc_{IN} = \frac{1}{2\pi R_{IN} C_{IN}} \text{ or } C_{IN} = \frac{1}{2\pi fc_{IN} R_{IN}}$$
 (1)

Using the SGM8902 as 2nd-Order Filter

Several audio DACs used today require an external low-pass filter to remove out of band noise. This is possible with the SGM8902 as it can be used like a standard OPAMP.

Several filter topologies can be implemented both single-endedly and differentially. In Figure 4, a Multi Feedback (MFB), with differential input and single-ended input is shown.

An AC coupling capacitor to remove DC-content from the source is shown. It serves to block any DC-content from the source and lowers the DC-gain to one, helping reducing the output DC-offset to minimum.

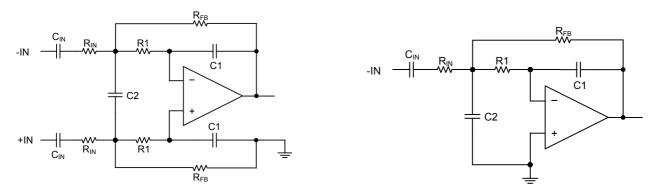


Figure 4. 2nd-Order Active Low Pass Filter

The resistor values should be kept low to obtain low noise, but should also be high enough to get a small size AC coupling cap. With the proposed values, $33k\Omega$, $68k\Omega$, $100k\Omega$, an SNR of 107dB can be achieved with a small $1\mu F$ input AC coupling capacitor.

Pop-Free Power Up

Pop-free power up is ensured by keeping the \overline{SD} (EN) (shutdown pin) low during power supply ramp up and down. The EN pin should be kept low until the input AC coupling capacitors are fully charged before asserting the EN pin high. This way proper precharge of the AC coupling is performed, and pop-free power-up is achieved. Figure 5 illustrates the preferred sequence.

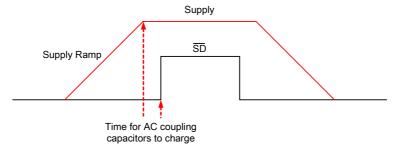
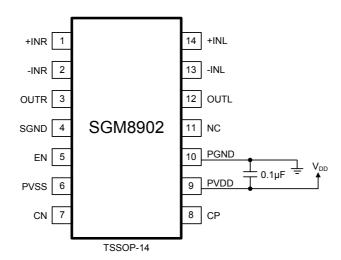
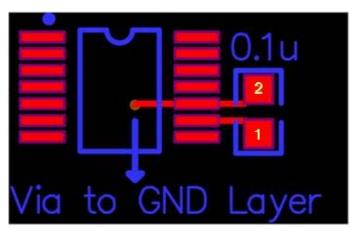


Figure 5. Power-Up Sequence

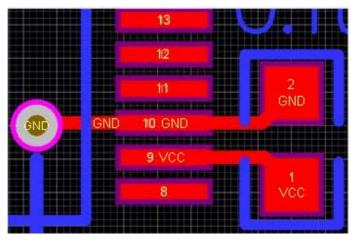

Capacitive Load

The SGM8902 has the ability to drive large capacitive load up to 220pF directly, and larger capacitive loads can be accepted by adding a series resistor of 10Ω or larger.

Gain-Setting Resistors

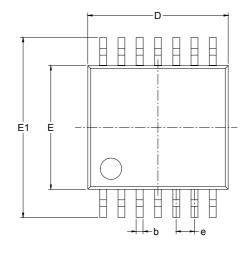

The gain setting resistors, R_{IN} and R_{FB} , must be placed close to the input pins to minimize the capacitive loading on these pins and to ensure maximum stability of the SGM8902.

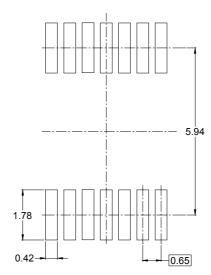
PCB Layout Guide

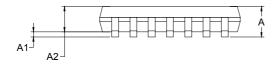


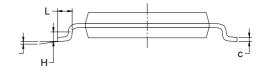
NOTE: $0.1\mu F$ decoupling capacitor must be close to PGND and PVDD pins; capacitor can be connected between PVDD and PGND pins directly and then connect PGND pin to GND layer.

The reference PCB layout is shown in below:




Zoomed in:


PACKAGE OUTLINE DIMENSIONS


TSSOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α		1.100		0.043	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.000	0.031	0.039	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D	4.900	5.100	0.193	0.201	
Е	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
е	0.650 BSC		0.026	BSC	
L	0.500	0.700	0.02	0.028	
Н	0.25 TYP		0.01 TYP		
θ	1°	7°	1°	7°	