SGM8959-1/SGM8959-2 Low V_{os}, Low Input Current, Low Noise, SGMICRO High Precision, Zero-Drift Operational Amplifiers

GENERAL DESCRIPTION

The single SGM8959-1 and dual SGM8959-2 CMOS operational amplifiers provide very low offset voltage and zero-drift over time and temperature.

The miniature, high precision, low quiescent current amplifiers offer high-impedance inputs that have a wide input common mode range 100mV beyond the rails and rail-to-rail output that swings within 5mV of the rails. Single or dual supplies as low as +2.1V ($\pm 1.05V$) and up to +5.5V ($\pm 2.75V$) may be used. They are optimized for low voltage, single-supply operation.

The SGM8959-1/2 offer excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.

The single SGM8959-1 is available in Green SOT-23-5, SC70-5 and SOIC-8 packages. The dual SGM8959-2 is available in Green SOIC-8 and TDFN-3×3-8L packages. They are specified over -40°C to +125°C temperature range.

FEATURES

- Low Offset Voltage: 4.0µV (TYP)
- Input Voltage Noise: 8nV/ \sqrt{Hz}
- Low 0.1Hz to 10Hz Noise: $0.2\mu V_{\text{P-P}}$
- Quiescent Current: 340µA/Amplifier (TYP)
- Integrated EMI Filter
- Single or Dual Supplies Operation
- Supply Voltage Range: 2.1V to 5.5V
- Rail-to-Rail Input and Output
- Gain-Bandwidth: 3.9MHz
- Slew Rate : 0.6V/µs
- -40°C to +125°C Operating Temperature Range
- Small Packaging: SGM8959-1 Available in Green SOT-23-5, SC70-5 and SOIC-8 Packages SGM8959-2 Available in Green SOIC-8 and TDFN-3×3-8L Packages

APPLICATIONS

Transducer Applications Temperature Measurements Electronic Scales Medical Instrumentation Battery-Powered Instrument Handheld Test Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	SOT-23-5	-40°C to +125°C	SGM8959-1XN5G/TR	GD4XX	Tape and Reel, 3000
SGM8959-1	SC70-5	-40°C to +125°C	SGM8959-1XC5G/TR	GCDXX	Tape and Reel, 3000
	SOIC-8	-40°C to +125°C	SGM8959-1XS8G/TR	SGM 89591XS8 XXXXX	Tape and Reel, 2500
SCM8050.2	SOIC-8	-40°C to +125°C	SGM8959-2XS8G/TR	SGM 89592XS8 XXXXX	Tape and Reel, 2500
SGM8959-2 -	TDFN-3×3-8L	-40°C to +125°C	SGM8959-2XTDB8G/TR	SGM GD5DB XXXXX	Tape and Reel, 4000

NOTE: XX = Date Code. XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	6V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering 10sec)	+260°C

RECOMMENDED OPERATING CONDITIONS

Specified Voltage Range	2.1V to 5.5V
Operating Temperature Range	40°C to +125°C

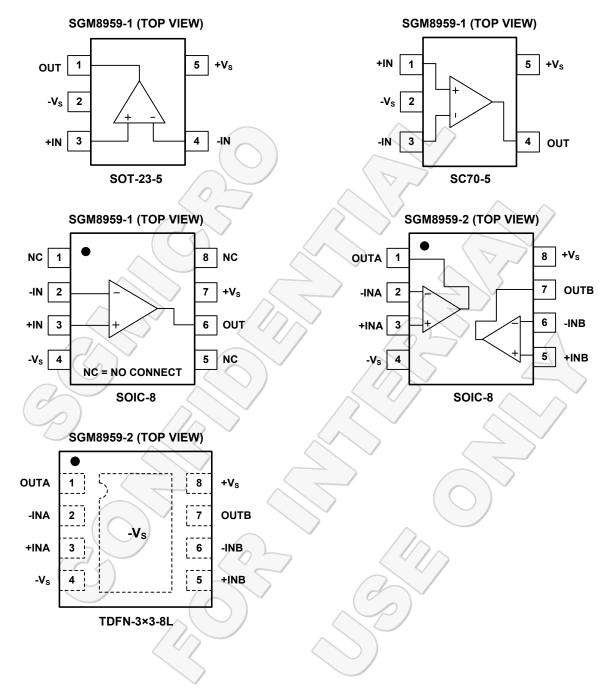
OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

MARKING INFORMATION

For example: GD4GA (2016, January)

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATIONS

Low V_{os}, Low Input Current, Low Noise, High Precision, Zero-Drift Operational Amplifiers

ELECTRICAL CHARACTERISTICS

 $(V_S = 5V, V_{CM} = +V_S/2, V_{OUT} = +V_S/2, and R_L = 10k\Omega \text{ to } +V_S/2, \text{ typical values are at } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS						
Input Offset Voltage	V _{os}	V _S = 5V		4		μV
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			0.1		µV/⁰C
Input Bias Current	IB			350		pА
Input Offset Current	I _{os}			700		pА
Common Mode Rejection Ratio	CMRR	$(-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S}) + 0.1V$		125		dB
Open-Loop Voltage Gain	A _{OL}	$(-V_{\rm S}) + 0.1V < V_{\rm O} < (+V_{\rm S}) - 0.1V, R_{\rm L} = 10k\Omega$		130		dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing from Rail		R _L = 10kΩ		5		mV
Short-Circuit Current	Isc			45		mA
POWER SUPPLY	(\bigcirc)			\geq		
Specified Voltage Range	Vs		2.1		5.5	V
Power Supply Rejection Ratio	PSRR	V _S = 2.1V to 5.5V	\bigtriangledown	0.6		μV/V
Quiescent Current/Amplifier	Ιq	I ₀ = 0		340		μA
Turn-On Time	\geq	V _S = 5V		30		μs
DYNAMIC PERFORMANCE						
Gain-Bandwidth Product	GBP	C _L =30pF		3.9		MHz
Slew Rate	SR	G = +1		0.6	\searrow	V/µs
NOISE						
Input Voltage Noise		f = 0.1Hz to 10Hz		0.2	/	$\mu V_{P\text{-}P}$
Input Voltage Noise Density	en	f = 1kHz		8		nV/√ _{Hz}

SG Micro Corp

APPLICATION INFORMATION

The SGM8959-1 and SGM8959-2 are unity-gain stable and free from unexpected output phase reversal. They provide low offset voltage and very low drift over time and temperature. For lowest offset voltage and precision performance, circuit layout and mechanical conditions should be optimized. Avoid temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed from connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by assuring they are equal on both input terminals. Other layout and design considerations include:

• Use low thermoelectric-coefficient conditions (avoid dissimilar metals).

• Thermally isolate components from power supplies or other heat sources.

• Shield operational amplifier and input circuitry from air currents, such as cooling fans.

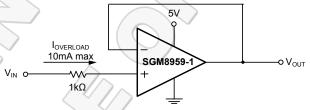
Following these guidelines will reduce the likelihood of junctions being at different temperatures, which can cause thermoelectric voltages of 0.1μ V/°C or higher, depending on materials used.

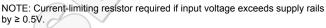
Operating Voltage

The SGM8959-1 and SGM8959-2 operational amplifiers operate over a power supply range of +2.1V to +5.5V (\pm 1.05V to \pm 2.75V). Supply voltages higher than 6V (absolute maximum) can permanently damage the device.

Input Voltage

The SGM8959-1 and SGM8959-2 input common mode voltage range extends 0.1V beyond the supply rails. The SGM8959-1 is designed to cover the full range without the troublesome transition region found in some other rail-to-rail amplifiers.


Normally, input bias current is about 350pA; however, input voltages exceeding the power supplies can cause excessive current to flow into or out of the input pins. Momentary voltages greater than the power supply can be tolerated if the input current is limited to 10mA. This limitation is easily accomplished with an input resistor, as shown in Figure 1.


Internal Offset Correction

The SGM8959-1 and SGM8959-2 operational amplifiers use an auto-calibration technique with a time-continuous 250kHz operational amplifier in the signal path. Upon power-up, the amplifier requires approximately 30μ s to achieve specified V_{os} accuracy.

Achieving Output Swing to The Operational Amplifier Negative Rail

Some applications require output voltage swings from 0V to a positive full-scale voltage (such as +2.5V) with excellent accuracy. With most single-supply operational amplifiers, problems arise when the output signal approaches 0V, near the lower output swing limit of a single-supply operational amplifier. A good singlesupply operational amplifier may swing close to single-supply ground, but will not reach ground. The output of the SGM8959-1 and SGM8959-2 can be made to swing to ground, or slightly below, on a single-supply power source. To do so requires the use of another resistor and an additional, more negative, power supply than the operational amplifier negative supply. A pull-down resistor may be connected between the output and the additional negative supply to pull the output down below the value that the output would otherwise achieve, as shown in Figure 2.

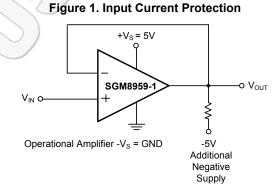
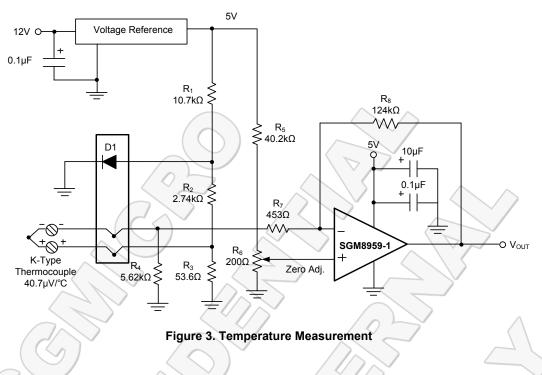



Figure 2. For VOUT Range to Ground

APPLICATION INFORMATION (continued)

General Layout Guidelines

Attention to good layout practices is always recommended. Keep traces short and, when possible, use a printed circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1µF capacitor closely across the supply pins. These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the (electromagnetic-interference) EMI susceptibility. Operational amplifiers vary in their susceptibility to radio frequency interference (RFI). RFI can generally be identified as a variation in offset voltage or DC signal levels with changes in the interfering RF signal. The SGM8959-1 has been specifically designed to minimize susceptibility to RFI and demonstrates remarkably low sensitivity compared to previous generation devices. Strong RF fields may still cause varying offset levels.

Figure 4 shows the basic configuration for a bridge amplifier.

A low-side current shunt monitor is shown in Figure 5. R_N are operational resistors used to isolate the ADC from the noise of the digital l²C bus. Since the ADC is a 16-bit converter, a precise reference is essential for maximum accuracy. Related application circuits are shown in Figure 6 ~ 8.

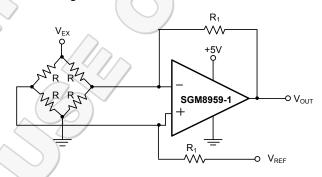
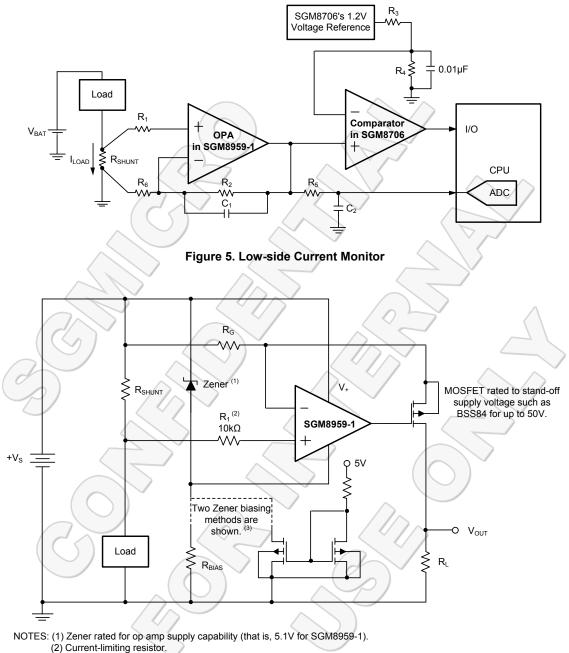
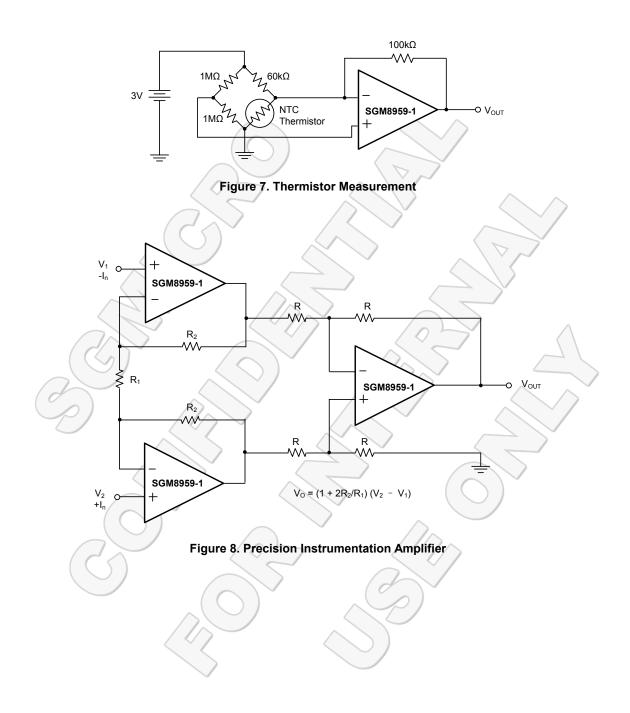
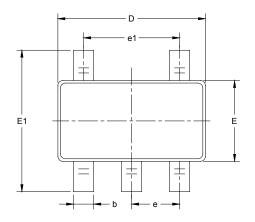



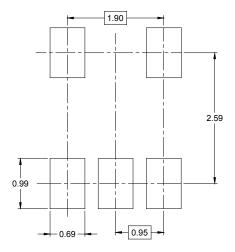
Figure 4. Single Operational Amplifier Bridge Amplifier

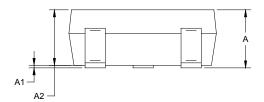
APPLICATION INFORMATION (continued)

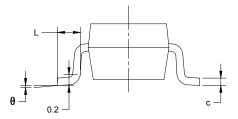


(3) Choose Zener biasing resistor or dual NMOSFETs (FDG6301N, NTJD4001N, or Si1034).

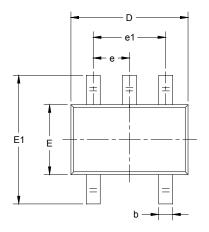

Figure 6. High-side Current Monitor

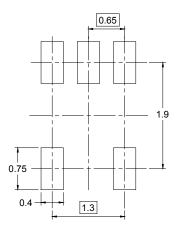


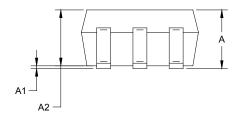

APPLICATION INFORMATION (continued)

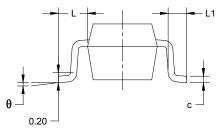


SOT-23-5

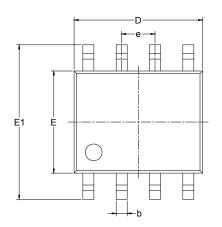


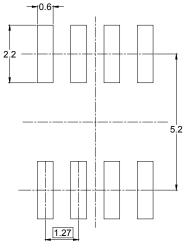


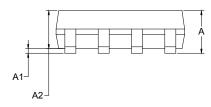

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.300 0.500		0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037	BSC	
e1	1.900	1.900 BSC		BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

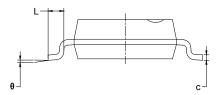


SC70-5

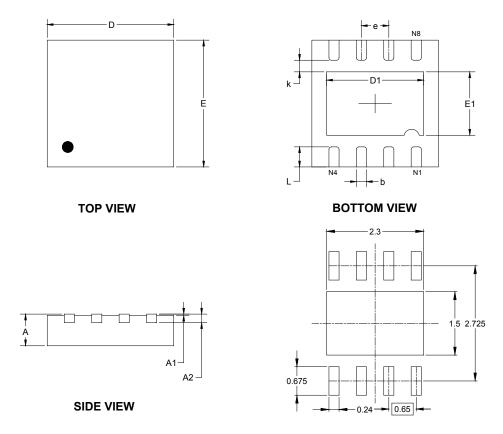






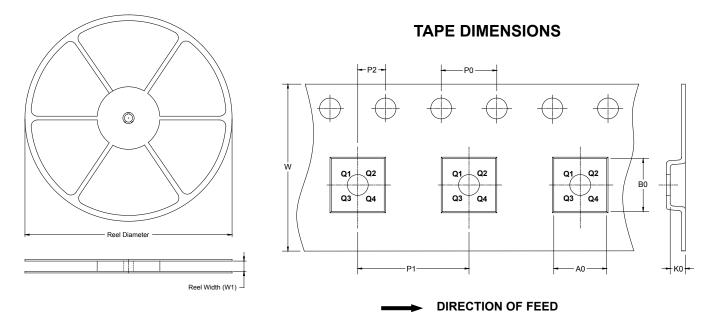

Symbol	-	nsions meters	-	isions ches
-	MIN	MAX	MIN	MAX
A	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.080	0.150	0.003	0.006
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
e	0.65	0.65 TYP		6 TYP
e1	1.300 BSC		0.051 BSC	
L	0.525 REF		0.021	REF
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

SOIC-8



Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0° 8°		0°	8°	

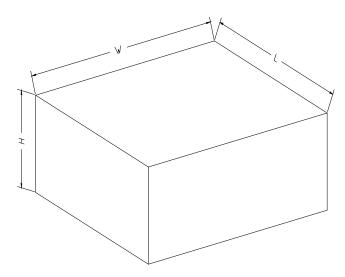
TDFN-3×3-8L



Symbol	-	nsions meters	Dimer In In		
	MIN	MAX	MIN	MAX	
A	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	B REF	0.008 REF		
D	2.900	2.900 3.100		0.122	
D1	2.200	2.400	0.087	0.094	
E	2.900	3.100	0.114	0.122	
E1	1.400	1.600	0.055	0.063	
k	0.200) MIN	0.008	3 MIN	
b	0.180	0.300	0.007	0.012	
е	0.650	0.650 TYP		TYP	
L	0.375 0.575		0.015	0.023	

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-5	7″	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SC70-5	7″	9.5	2.25	2.55	1.20	4.0	4.0	2.0	8.0	Q3
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
TDFN-3×3-8L	13″	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

KEY PARAMETER LIST OF TAPE AND REEL

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	
13″	386	280	370	5	

KEY PARAMETER LIST OF CARTON BOX