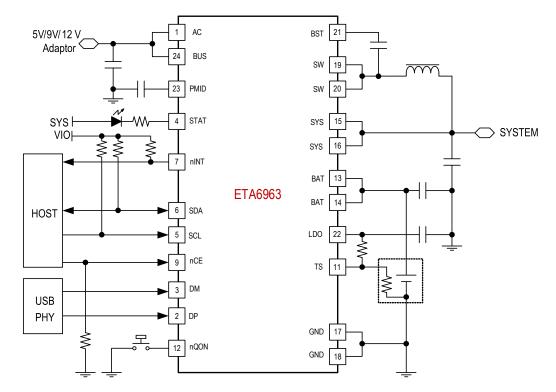
I²C Controlled 13.5V/3A, 1-Cell Battery Charger with Power Path Management and USB Charger Detection

DESCRIPTION

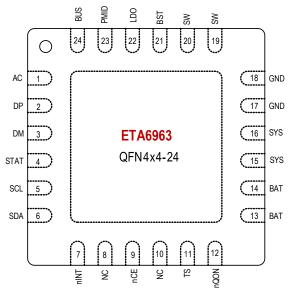
ETA6963 is a highly-integrated 3A switch-mode battery charge and system power path management device for single cell Li-lon and Li-polymer battery. It features fast charging with high input voltage support for a wide range of smart phones, tablets and portable devices. Its low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life. Its input voltage and current regulation deliver maximum charging power. The solution is highly integrated with input reverse-blocking FET, high/low-side switching FET, and battery FET. It also integrates the bootstrap diode for the high-side gate drive. The I2C serial interface with charging and system settings makes the device a truly flexible solution. The device supports a wide range of input sources. The device is compliant with USB 2.0 and USB 3.0 power spec with input current and voltage regulation. The device also meets USB On-the-Go (OTG) operation power rating specification by supplying 5.15 V on BUS pin with constant current limit up to 1.2A. The power path management regulates the system slightly above battery voltage but does not drop below 3.5 V minimum system voltage (programmable). With this feature, the system maintains operation even when the battery is completely depleted or removed. When the input current limit or voltage limit is reached, the power path management automatically reduces the charge current to zero. As the system load continues to increase, the power path discharges the battery until the system power requirement is met. This Supplement Mode prevents overloading the input source.

The ETA6963 is available in a QFN4x4-24L package.


FEATURES

- High-Efficiency, 1.5MHz, Synchronous Switching Buck Charger
 - > 90% Charge Efficiency at 2A from 5V Input
 - Programmable PFM Mode for Light Load Conditions
- Supports USB On-The-Go (OTG)
 - Programmable Current Limit Boost Converter with Up to 1.2A Output
- Wide Range Single Input to Support both USB Input and High Voltage Adapters
 - Support 3.9V to 13.5V Input Voltage Range
 With 22V Absolute Maximum Input Voltage
 Rating
 - Programmable Input Current Limit (100mA to 3.2A With 100mA Resolution)
 - > Auto Detect USB BC1.2, SDP, CDP, DCP and Non-Standard Adaptors
- Narrow VDC (NVDC) Power Path Management
- BATFET Control to Support Ship Mode, Wake Up and Full System Reset
- Flexible Autonomous and I²C Mode for Optimal System Performance
- High Integration Includes All MOSFETs, Current Sensing and Loop Compensation
- Safety
 - Battery Temperature Sensing for Charge and Boost Mode
 - > Thermal Regulation and Thermal Shutdown
- Input UVLO and Overvoltage Protection

APPLICATIONS


- Tablet PC, Smart Phone, Internet Devices
- Portable Audio Speaker, Handheld Computers, PDA, POS

TYPICAL APPLICATION

ORDERING	PART No.	PACKAGE	TOP MARK	Pcs/Reel
	ETA6963Q4Y	QFN4x4-24	ETA6963 YWW2L	5000
INFORMATION				

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

AC, BUS, PMID pin to GND Voltage	–2V to 22V
SW to GND Voltage	–0.3V to 22V
SYS, BAT to GND Voltage	–0.3V to 6V
BST to SW Voltage	–0.3V to 6V
All Other Pin to GND Voltage	–0.3V to 6V
SW, BUS, BAT, SYS to PGND current	Internally limited
Operating Temperature Range	40°C to 85°C
Storage Temperature Range	–55°C to 150°C
Thermal Resistance θ_{JA} θ_{JC}	
QFN4x4–2410.	°C/W
Lead Temperature (Soldering,10sec)	260°C
ESD HBM (Human Body Mode)	2KV

ELECTRICAL CHARACTERISTICS

(V_{BAT} = 3.6V, unless otherwise specified. Typical values are at T_A = 25°C.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
QUIESCENT CURRENTS					
Battery discharge current (BAT, SW, SYS) in buck mode	V_{BAT} = 4.5V, V_{BUS} < $V_{BUS-UVLOZ}$, leakage between BAT and BUS, T _J < 85°C			5	μA
Battery discharge current (BAT) in buck mode	V_{BAT} = 4.5V, HIZ Mode and BATFET_DIS = 1 or No V _{BUS} , I ² C disabled, BATFET Disabled. T _J < 85°C		20	40	μA
Battery discharge current (BAT, SW, SYS)	V_{BAT} = 4.5V, HIZ Mode and OVPFET_DIS = 1 or No V _{BUS} , I2C Disabled, BATFET Enabled. T _J < 85°C		80	160	μΑ
Input supply current (V_{BUS}) in buck mode	$V_{BUS} > V_{BUS_{UVLO}}, V_{BUS} > V_{BAT},$ converter switching, $V_{BAT} = 3.8V$, $I_{SYS} = 0A$		5		mA
Battery Discharge Current in boost mode	V_{BAT} = 4.2V, boost mode, I_{BUS} = 0A, converter switching		2		mA
BUS, AC AND BAT PIN POWER-UP					
V _{BUS} operating range	V _{BUS} rising	3.9		13.5	V
V _{BUS} for active I ² C, no battery Sense BUS pin voltage	V _{BUS} rising		3.3	3.6	V
I ² C active hysteresis	V_{BUS} falling from above $V_{\text{BUS}_\text{UVLO}}$		300		mV
One of the conditions to turn on LDO	V _{BUS} rising		3.65	3.9	V
One of the conditions to turn on LDO	V _{BUS} falling		500		mV
Sleep mode falling threshold	(V _{BUS} –V _{BAT}), V _{BUSMIN_FALL} ≤ V _{BAT} ≤ V _{REG} , V _{BUS} falling	15	60	110	mV
Sleep mode rising threshold $(V_{BUS}-V_{BAT}), V_{BUSMIN_FALL} \leq V_{REG}, V_{BUS}$ rising		110	220	330	mV
V _{BUS} 6.5V Overvoltage rising threshold	V _{BUS} rising, OVP<1:0> = '01'	6	6.5	7	V
V _{BUS} 11V Overvoltage rising threshold	V _{BUS} rising, OVP<1:0> = '10'	10	11	12	V
V _{BUS} 14V Overvoltage rising threshold	V _{BUS} rising, OVP<1:0> = '11'	13	14	15	V
V _{BUS} 6.5V Overvoltage hysteresis	V _{BUS} falling, OVP<1:0> = '01'		220		mV
V _{BUS} 11V Overvoltage hysteresis	V _{BUS} falling, OVP<1:0> = '10'		400		mV

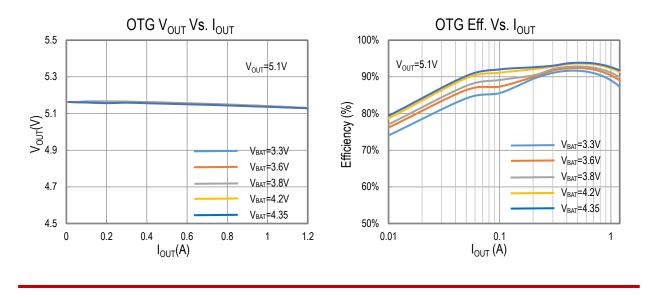
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{BUS} 14V Overvoltage hysteresis	V _{BUS} falling, OVP<1:0> = '11'		500		mV
BAT for active I ² C, no adapter	V _{BAT} rising	2.5	2.7		V
Battery Depletion Threshold	V _{BAT} falling	2.2	2.4	2.6	V
Battery Depletion Threshold	V _{BAT} rising	2.35	2.58	2.8	V
Battery Depletion rising hysteresis	V _{BAT} rising		180		mV
Bad adapter detection falling threshold	V _{BUS} falling	3.7	3.9	4.1	V
Bad adapter detection hysteresis			80		mV
Bad adapter detection current source	Sink current from V_{BUS} to GND		30		mA
POWER-PATH					
System regulation voltage	V _{BAT} < SYS_MIN[2:0] = 101, BATFET Disabled (REG07[5] = 1)		3.68		V
System Regulation Voltage	I _{SYS} = 0A, V _{BAT} > V _{SYS_MIN} , BATFET disabled (REG07[5] = 1)		V _{BAT} + 70mV		
Maximum DC system voltage output	I _{SYS} = 0A, V _{BAT} = 4.4V, BATFET disabled (REG07[5] = 1)		4.47		V
Top reverse blocking MOSFET on- resistance between VBUS and PMID - Q1	-40°C≤ TA ≤ 125°C	20	40	60	mΩ
Top switching MOSFET on- resistance between PMID and SW- Q2	V _{LDO} = 5 V , -40°C≤ T _A ≤ 125°C	35	70	105	mΩ
Bottom switching MOSFET on- resistance between SW and GND- Q3	V _{LDO} = 5 V , -40°C≤ T _A ≤ 125°C	21	43	65	mΩ
SYS-BAT MOSFET on-resistance – Q4	QFN package, Measured from BAT to SYS, V _{BAT} = 4.2V, T _J =–40-125°C	13	27	40	mΩ
BATFET forward voltage in supplement mode			30		mV
BATTERY CHARGER		<u> </u>			
Change voltage program range		3.848		4.616	V
Charge voltage step			32		mV
Charge voltage setting	V _{REG} (REG04[7:3]= 01011) = 4.2 V	4.179	4.2	4.221	V
Charge voltage setting accuracy	V _{BAT} = 4.2 V	-0.5		+0.5	%
Charge current regulation range		0		3000	mA
Charge current regulation step			60		mA
Charge current regulation setting	I _{CHG} = 240 mA, V _{BAT} = 3.8V		0.24		А
Charge current regulation accuracy	I _{CHG} = 240 mA, V _{BAT} = 3.8V	-10		+10	%
Battery LOW falling threshold	I _{CHG} = 240mA	2.6	2.8	3	V

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Battery LOW rising threshold	Pre-charge to Fast charge	2.9	3.1	3.3	V
Pre-charge current regulation	IPRECHG[3:0] = '0010'	90	180	270	mA
Termination current regulation	ITERM[3:0] = '0010', V _{BAT} = 4.2V	90	180	270	mA
Battery short voltage	V _{BAT} falling	1.8	2	2.2	V
Battery short voltage	V _{BAT} rising	2.05	2.25	2.45	V
Battery short current	V _{BAT} =1V		145		mA
Recharge Threshold below V _{BAT_REG}	V _{BAT} falling, REG04[0] = 0	70	120	170	mV
Recharge Threshold below V _{BAT_REG}	V _{BAT} falling, REG04[0] = 1	190	240	290	mV
INPUT VOLTAGE AND CURRENT R	· · · · ·				
Input voltage regulation limit	VINDPM[3:0] = 0110 = 4.5 V	4.32	4.5	4.68	V
Input voltage regulation accuracy		-4		4	%
Input voltage regulation limit	VINDPM[3:0] = 3.9V,	4.40	4.0	4.47	
tracking V _{BAT}	$V_{\text{DPM}_{VBAT}_{TRACK}} = 300 \text{mV}, V_{\text{BAT}} = 4.0 \text{V}$	4.13	4.3	4.47	V
USB input current regulation limit	V _{BUS} = 5V, current pulled from SW, IINDPM [4:0] = 10111	2.16	2.4	2.64	A
Input current limit during system			200		
start-up sequence			200		mA
BAT PIN OVERVOLTAGE PROTECT	ΓΙΟΝ	•			
Battery overvoltage threshold	V_{BAT} rising, as percentage of $V_{BAT_{REG}}$		108		%
Battery overvoltage threshold	\/falling_ on percentage of \/				
Hysteresis	V_{BAT} falling, as percentage of $V_{BAT_{REG}}$	103			%
THERMAL REGULATION AND THE	RMAL SHUTDOWN				
Junction Temperature Regulation Threshold	Temperature Increasing, TREG = 1		110		°C
Junction Temperature Regulation Threshold	Temperature Increasing, TREG = 0		90		°C
Thermal Shutdown Rising Temperature			160		°C
Thermal Shutdown Hysteresis			30		°C
JEITA Thermistor Comparator (BU	CK MODE)				
T1 (0°C) threshold, Charge	Charger evenende charge				
suspended T1 below this	Charger suspends charge.		73.3		% V _{LDO}
temperature.	As Percentage to VLDO				
Falling	As Percentage to VLDO		71.5		$\% V_{LDO}$
T2 (10°C) threshold, Charge back to $I_{CHG}/2$ and 4.2 V below this temperature	As Percentage to V _{LDO}		68		% V _{ldo}
Falling	As Percentage to VLDO		66.8		% V _{LDO}
		I		I	1.1.1.200

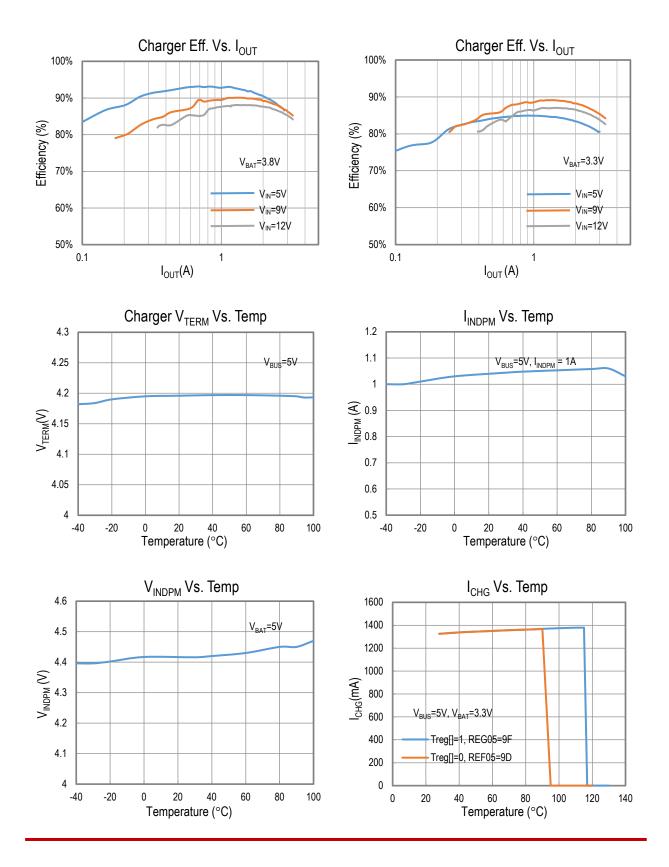
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
T3 (45°C) threshold, charge back to	Charger suspends charge.				
I_{CHG} and 4.05V above this	As Percentage to V_{LDO}		44.7		$\% V_{LDC}$
temperature.					
Falling	As Percentage to VLDO		45.7		$\% V_{LDC}$
T5 (60°C) threshold, charge	As Baraantaga to V		34.2		0/ \/
suspended above this temperature	As Percentage to V _{LDO}		34.2		$\% V_{LDC}$
Falling	As Percentage to VLDO		35.3		% V _{LDC}
COLD OR HOT THERMISTER COM	PARATOR (BOOST MODE)				
Cold Tomporative Threshold TC air	As Percentage to VLDO (Approx				
Cold Temperature Threshold, TS pin	20°C w/ 103AT)	78	80	82	$\% V_{LDC}$
Voltage Rising Threshold	TJ = –20°C - 125°C				
Falling	TJ = –20°C - 125°C	77	79	81	$\% V_{LDC}$
List Targen and the Thread and TO air	As Percentage to V _{LDO} (Approx. 60°C				
Hot Temperature Threshold, TS pin	w/ 103AT),	29.2	31.2	33.2	$\% V_{LDC}$
Voltage falling Threshold	TJ = –20°C - 125°C				
Rising	TJ = –20°C - 125°C	32.4	34.4	36.4	$\% V_{LDC}$
CHARGE OVERCURRENT COMPAR	RATOR (CYCLE-BY-CYCLE)		•		
HSFET cycle-by-cycle over-current		4.0			
threshold		4.8	5.8	7.5	A
System over load threshold		4.7	5.2	5.7	Α
CHARGE UNDER-CURRENT COMP	ARATOR (CYCLE-BY-CYCLE)		•		
LSFET under-current falling			050		
threshold	From sync mode to non-sync mode		250		mA
PWM					
PWM switching frequency	Oscillator frequency		1500		kHz
Maximum PWM duty cycle			97		%
BOOST MODE OPERATION					
	$V_{BAT} = 3.8 V, I_{PMID} = 0 A,$				
Boost mode regulation voltage	BOOSTV[1:0] = '10'	5	5.15	5.3	V
Boost mode regulation voltage	$V_{BAT} = 3.8 \text{ V}, I_{PMID} = 0 \text{ A},$				
accuracy	BOOSTV[1:0] = '10'	-3		3	%
	V_{BAT} falling, MIN_VBAT_SEL = 0	2.6	2.8	3.0	V
	V _{BAT} rising, MIN_VBAT_SEL =0	2.8	3	3.2	V
Battery voltage exiting boost mode	V_{BAT} falling, MIN_VBAT_SEL = 1	2.3	2.5	2.7	V
	V_{BAT} rising, MIN_VBAT_SEL = 1	2.6	2.8	3.0	V
	BOOST_LIM = 1	1.2	1.4	0.0	Ā
OTG mode output current	BOOST_LIM = 0	0.5	0.7		A
OTG overvoltage threshold	Rising threshold	5.6	6	6.4	V
HSFET under current falling		0.0		0.4	v
			100		mA

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Hiccup Retrying timer			7		ms
Hiccup Off timer			28		ms
Maximum retry allowed	After the last retry, part clear		7		Time
	OTG_CONFIG bit to disable Boost		1		TIME
VLDO REGULATION					
LDO output voltage	V_{BUS} = 9V, I_{LDO} = 40mA		5		V
LDO output current limit	$V_{BUS} = 9V, V_{LDO} = 4V$		80		mA
LOGIC I/O PIN CHARACTERISTICS	(nCE, SCL, SDA)				-
Input low threshold				0.4	V
Input high threshold		1.3			V
High-level leakage current	Pull up rail 1.8 V			1	μA
LOGIC I/O PIN CHARACTERISTICS	(STAT, nINT)				
Low-level output voltage				0.4	V
VBUS/BAT POWER UP					
Bad adapter detection duration			30		ms
BATTERY CHARGER	·				
Deglitch time for charge Termination			7		S
Deglitch time for recharge			32		ms
System over-current deglitch time to			1		
turn off Q4			1		ms
Battery over-voltage deglitch time to			10		
disable charge			10		μs
Typical Charge Safety Timer Range	CHG_TIMER = 1		10		Hr
Typical Top-Off Timer Range	TOP_OFF_TIMER[1:0] = 10		30		min
nQON TIMING					
nQON low time to turn on BATFET	_10°C ≤ TJ ≤ 60°C		1.15		
and exit ship mode	$-10^{\circ}C \leq 1_{\rm J} \leq 00^{\circ}C$		1.15		S
nQON low time to reset BATFET	$-10^{\circ}C \le T_{J} \le 60^{\circ}C$		10		S
BATFET off time during full system	–10°C ≤ TJ ≤ 60°C		320		
reset	$-10^{\circ}C \le 1_{0} \le 00^{\circ}C$		520		ms
Enter ship mode delay	$-10 \circ C \le T_J \le 60 \circ C$		12		S
DIGITAL CLOCK AND WATCHDOG	TIMER				
REG05[4]=01			40		S
DP/DM DETECTION					
VDP/DM_600MVSRC	Voltage source (600 mV)		600		mV
RDM_19K			19		kΩ
VDP/DM_0P325			0.325		V
V2P7_VTH	DP/DM Threshold for non-standard adapter	2.55	2.7	2.85	V

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V2P0_VTH	DP/DM Threshold for non-standard adapter	1.85	2.0	2.15	V
V1P2_VTH	DP/DM Threshold for non-standard adapter	1.05	1.2	1.35	V


PIN DESCRIPTION

PIN NAME	PIN #	DESCRIPTION		
AC	1	Charger input voltage sense. This pin must be connected to BUS pin		
BUS	24	Charger input voltage. Bypass it with a 10μ F ceramic capacitor from BUS to PGND. The capacitor should be close to the BUS pin		
DP	DP 2 Positive line of the USB data line pair. DP/DM based USB host/chargin BC1.2 and nonstandard adaptors			
DM	3	Negative line of the USB data line pair. DP/DM based USB host/charging port detection. The detection includes data contact detection (DCD), primary and secondary detection in BC1.2 and nonstandard adaptors		
STAT	4	Open-drain charge status output. Connect the STAT pin to a logic rail via 10kΩ resistor. The STAT pin indicates charger status. Connect a current limit resistor and a LED from a rail to this pin. Charge in progress: LOW Charge complete or charger in SLEEP mode: HIGH Charge suspend (fault response)or No bat: 1Hz, 50% duty cycle Pulses		
SCL	5	I ² C interface clock. Connect a 10k Ω pull up resistor to the logic rail		
SDA	6	I ² C interface data. Connect a 10k Ω pull up resistor to the logic rail		
nINT	7	Open-drain interrupt Output. Connect the nINT pin to a logic rail through $10k\Omega$ resistor. The nINT pin sends an active low, 256µs pulse to host to report charger device status and fault		
NC	8	No Connect. Keep the pin float		
nCE	9	Charge disable control pin. nCE = 0, charge is enabled. nCE = 1, charge is disabled		
NC	10	No Connect. Keep the pin float		
TS	11	Temperature qualification voltage input to support JEITA profile. Connect a negative temperature coefficient thermistor. Program temperature window with a resistor divider from LDO to TS to GND. Charge suspends when either TS pin is out of range. When TS pin is not used, connect a $10k\Omega$ resistor from LDO to TS and connect a $10k\Omega$ resistor from TS to GND. It is recommended to use a $103AT-2$ thermistor		
nQON	12	BATFET enable/reset control input. When BATFET is in ship mode, a logic low of $t_{SHIPMODE}$ (typical 1.15s) duration turns on BATFET to exit shipping mode. When V_{BUS} is not plugged-in, a logic low of t_{QON_RST} (minimum 8s) duration resets SYS (system power) by turning BATFET off for t_{BATFET_RST} (minimum 250ms) and then re-enable BATFET to provide full system power reset. The pin contains an internal pull-up to maintain default high logic		


PIN NAME	PIN #	DESCRIPTION
BAT	BAT 13, 14	Positive battery terminal. The internal BATFET and current sensing is connected between
DAI	15, 14	SYS and BAT. Connect a 10µF close to the BAT pin
SYS	15, 16	Converter output connection point. The internal current sensing network is connected
515	15, 10	between SYS and BAT pin. Connect 2 x10µF close to the SYS pin
GND	GND 17, 18 Power Ground	
SW	SW 19, 20	Switching node output . Connected to output inductor. Connect the 10nF bootstrap
500	19, 20	capacitor from SW pin to BST pin
BST	21	Bootstrap capacitor connection for the high-side FET gate driver. Connect a 10nF ceramic
001	21	capacitor from BST pin to SW pin
LDO	22	LDO Output Voltage. Bypass the pin with 4.7µF (10V rating) capacitor from LDO to GND.
LDO	22	The capacitor should be closed to the pin
		Connection point between reverse blocking FET and high-side switching FET. Bypass it
PMID	23	with 2 x10µF capacitor from PMID to PGND. This capacitor should be close to the PMID
		pin

TYPICAL PERFORMANCE CHARACTERISTICS

(Typical values are at T_A = 25°C unless otherwise specified.)

TYPICAL PERFORMANCE CHARACTERISTICS cont'

Empower, Transcend, Achieve!

FUNCTION DESCRIPTION

ETA6963 device is a highly integrated 3A switch-mode battery charger for single cell Li-Ion and Li-polymer battery. It includes the input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4), and bootstrap diode for the high-side gate drive **POWER UP FROM BATTERY WITHOUT INPUT SOURCE**

When a battery is applied without other input, the device checks the battery voltage to turn on BATFET but not V_{LDO} to minimize the supply current, especially for NTC resistor network. All supply will be directly from battery. V_{LDO} is disabled until BOOST is enabled. Anyway, in order to optimize the discharge current from battery at light load, BATFET gate charge pump operates with lower frequency.

POWER UP WITH INPUT SOURCE

When an input source is plugged in, the device checks the input source voltage to turn on LDO and all the bias circuits. It detects and sets the input current limit before the buck converter is started. The power up sequence from input source is as listed:

Power up V_{LDO}
 Poor Source Qualification
 Input Source Type Detection is based on D+/D– to set default input current limit (I_{INDPM}) register or input source type.

4.Input Voltage Limit Threshold Setting (VINDPM threshold)

5.Converter Power-up

LDO POWER UP

 $V_{\mbox{\scriptsize LDO}}$ is enabled when the below conditions are met:

- 1. V_{BUS} is above 3.65V
- 2. V_{BUS} is above V_{BAT} + V_{SLEEP} (200mV)in Buck mode or V_{BUS} below V_{BAT} + V_{SLEEP} in Boost mode

Right after two above conditions are valid, LDO is powered up right away

POWER SOURCE QUALIFICATION

After LDO powers up, the device checks the current capability of the input source. The input source has to meet the following requirements in order to start the buck converter.

- 1. 200mS delay after LDO enable
- 2. V_{BUS} below the V_{BUS_OVP} threshold
- 3. V_{BUS} above 3.8V when pulling down 30mA at BUS pin

If the device fails the poor source detection in 30ms, it repeats poor source qualification every 2 seconds. Once the input source passes all the conditions above, the status register bit VBUS_GD is set high and the nINT pin is pulsed to signal to the host.

INPUT SOURCE TYPE DETECTION

After the VBUS_GD bit is set, the device will run input source detection through the DP/DM lines. The ETA6963 follows the USB Battery Charging Specification (BC1.2) to detect input source (SDP/CDP/DCP) and non-standard adapter through USB DP/DM lines, And after input type detection is completed, Input current limit register is changed

to set current limit, VBUS_STAT bits are updated.

The host can over-write IINDPM register to change the input current limit if needed. The charger input current is always limited by the IINDPM register.

DP/DM DETECTION SETS INPUT CURRENT LIMIT

The ETA6963 contains a DP/DM based input source detection to set the input current limit at V_{BUS} plug-in. The DP/DM detection includes standard USB BC1.2 and non-standard adapter. When input source is plugged in, the device starts standard USB BC1.2 detections. The USB BC1.2 is capable to identify Standard Downstream Port (SDP), Charging Downstream Port (CDP) and Dedicated Charging Port (DCP). When the Data Contact Detection (DCD) timer expires, the non-standard adapter detection is applied to set the input current limit. The non-standard detection is used to distinguish vendor specific adapters (Apple and Samsung) based on their unique dividers on the DP/DM pins. Base on DP/DM configuration, the input current limit will be set following the below table:

NON-STANDARD ADAPTER	DP THRESHOLD	DM THRESHOLD	INPUT CURRENT LIMIT (A)
Divider1	V _{DP} within V2P7_VTH	V _{DM} within V2P0_VTH	2.1
Divider2	V _{DP} within V1P2_VTH	V_{DM} within V1P2_VTH	2
Divider3	V _{DP} within V2P0_VTH	V_{DM} within V2P7_VTH	1
Divider4	V _{DP} within V2P7_VTH	V_{DM} within V2P7_VTH	2.4

Table 1: Non-standard Adapter Detection

Table 2: Input Current Limit Setting from D+/D– Detection

D+/D-	INPUT CURRENT
DETECTION	LIMIT (A)
USB SDP	0.5
USB CDP	1.5
USB DCP	2.4
Divider1	2.1
Divider2	2
Divider3	1
Divider4	2.4
Unknown Adapter	0.5

BUCK POWER UP

After the input current is set, the device starts Buck converter and allow HSFET and LSFET switching. The ETA6963 provide soft-start time, V_{SYS} short protection to avoid overshoot current. When switching is over the soft-start time, the BATFET starts turning on then allows charging progress.

The device provides soft-start when system rail is ramped up. When the system rail is below 2.2 V, the input current limit is set to the lower of 200 mA or IINDPM register setting. After the system rises above 2.2 V, the device limits input current to the value of IINDPM register. As a battery charger, the device deploys a highly efficient 1.5 MHz

step-down switching regulator. The fixed frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery voltage, charge current and temperature, simplifying output filter design.

In order to improve light load efficiency, the device switches to PFM control at light load when battery is below minimum system voltage setting or charging is disabled. During the PFM operation, the switching duty cycle is set by the voltage ratio of SYS and BUS. The PFM_DIS bit can be used to prevent PFM operation in either buck or boost configuration.

BOOST POWER UP

ETA6963 provide boost converter up to 1.2A output current. The boost is enabled when the below conditions are valid:

- 1. V_{BAT} above the battery voltage exiting boost mode threshold
- 2. V_{BUS} is less than $V_{BAT}+V_{SLEEP}$ (200mV)
- 3. OTG_CONFIG bit=1
- 4. TS pin is within acceptable range (VBHOT<VTS<VBCOLD)

During boost mode, the status register VBUS_STAT bits is set to 111, the BUS output voltage is 5.15 V by default and 1.5MHz Frequency. The output current can reach up to 1.2 A, selected through I2C (BOOST_LIM bit). The boost output is maintained when V_{BAT} is above V_{OTG_BAT} threshold. When OTG is enabled, the device starts up with PFM and later transits to PWM to minimize the overshoot. The PFM_DIS bit can be used to prevent PFM operation in either buck or boost configuration.

HOST MODE AND DEFAULT MODE

The ETA6963 is a host controlled charger, but it can operate in default mode without host management. In default mode, the device can be used as an autonomous charger with no host or while host is in sleep mode. When the charger is in default mode, WATCHDOG_FAULT bit is logic high. When the charger is in host mode, WATCHDOG_FAULT bit is logic low.

After power-on-reset, the device starts in default mode with watchdog timer expired or default mode. All the registers are in the default settings.

In default mode, the device keeps charging the battery with default 10 hours fast charging safety timer. At the end of the 10 hours, the charging is stopped and the buck converter continues to operate to supply system load.

Writing a '1' to the WD_RST bit transitions the charger from default mode to host mode. All the device parameters can be programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by writing '1' to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT bit is set) or disable watchdog timer by setting WATCHDOG bits = 00.

When the watchdog timer expires (WATCHDOG_FAULT bit = 1), the device returns to default mode and all registers are reset to default values except IINDPM, VINDPM, BATFET_DLY, BATFET_DIS, EN_ICHG_MON, PFM_DIS, SYS_Min, Min_VBAT_SEL, Q1_FULLON, OVP, BOOSTV, VDPM_BAT_TRACK, and VINDPM_INT_MASK bits.

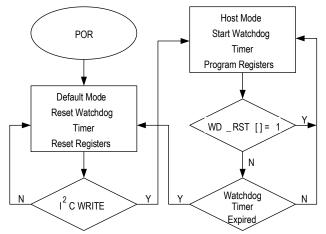


Figure 1: Watchdog Timer Flow Chart

AUTONOMOUS BATTERY CHARGER

The device charges 1cell Li-lon battery with up to 3A charge current for high capacity tablet battery. The 27mΩ BATFET improves charging efficiency and minimize the voltage drop during discharging.

With battery charging is enabled (CHG_CONFIG = 1 and nCE pin is LOW), the device autonomously completes a charging cycle without host involvement. The host can always control the charging operations and optimize the charging parameters by writing to the corresponding registers through I²C.

A new charge cycle starts when the following conditions are valid:

- Converter starts
- Battery charging is enabled (CHG_CONFIG bit = 1 and ICHG register is not 0 mA and CE is low)
- No thermistor fault on TS
- No safety timer fault
- BATFET is not forced to turn off (BATFET_DIS bit = 0)

Default Mode	ETA6963
Charging Voltage	4.2V
Charging Current	2.048A
Pre-charge Current	180mA
Termination Current	180mA
Temperature Profile	JEITA
Safety Timer	10 hours

Table 3: Charging Parameter Default Setting

The charger device automatically terminates the charging cycle when the charging current is below termination threshold, charge voltage is above recharge threshold, and device not is in DPM mode or thermal regulation.

When a full battery voltage is discharged below recharge threshold (selectable through VRECHG bit), the device automatically starts a new charging cycle. After the charge is done, toggle nCE pin or CHG_CONFIG bit can initiate a new charging cycle.

The STAT output indicates the charging status: charging (LOW), charging complete or charge disable (HIGH) or charging fault (Blinking). The STAT output can be disabled by setting EN_ICHG_MON bits = 11. In addition, the status register (CHRG_STAT) indicates the different charging phases:

- 00-charging disable
- 01-precharge
- 10-fast charge (constant current) and constant voltage mode
- 11-charging done

Once a charging cycle is completed, an INT pulse is asserted to notify the host.

BATTERY CHARGER PROFILE

The device charges the battery in five phases: battery short, pre-conditioning, constant current, constant voltage and top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage and regulates current and voltage accordingly.

If the charger device is in DPM regulation or thermal regulation during charging, the actual charging current will be less than the programmed value. in this case, termination is temporarily disabled and the charging safety timer is counted at half the clock rate.

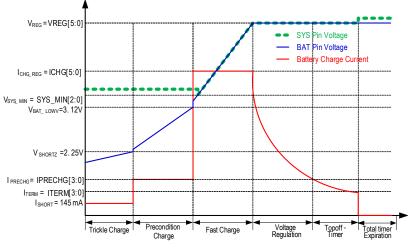


Figure 2: Battery Charger Profile

CHARGE TERMINATION CONFIGURATION

When battery voltage reach regulation level set by VREG[4:0], the device allow charger enter termination if EN_TERM[] = 1. In this state, when charge current falls below I_{TERM} level, charger will be terminated after T_{TOPOFF} . After the charging cycle is completed, the BATFET turns off. The converter keeps running to power the system, and BATFET can turn on again to engage Supplement Mode.

When termination occurs, the status register CHRG_STAT is set to 11, and an INT pulse is asserted to the host. Termination is temporarily disabled when the charger device is in input current, voltage or thermal regulation. Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination.

At low termination currents, due to the comparator offset, the actual termination current may be higher than the termination target. In order to compensate for comparator offset, a programmable top-off timer can be applied after termination is detected. The termination timer will follow safety timer constraints, such that if safety timer is suspended, so will the termination timer. Similarly, if safety timer is doubled, so will the termination timer.

TOPOFF_ACTIVE bit reports whether the top off timer is active or not. The host can read CHRG_STAT and TOPOFF_ACTIVE to find out the termination status.

Top off timer gets reset at one of the following conditions:

- Charge disable to enable
- Termination status low to high
- REG_RST register bit is set

The top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer value after termination will have no effect unless a recharge cycle is initiated. An INT pulse is asserted to the host when entering top-off timer segment as well as when top-off timer expires.

CHARGE SAFETY TIMER

The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The safety timer is 2 hours when the battery is below V_{BATLOW} threshold. The user can program fast charge safety timer through I²C (CHG_TIMER bits). When safety timer expires, the fault register CHRG_FAULT bits are set to 11 and an INT pulse is asserted to the host. The safety timer feature can be disabled through I²C by setting EN_TIMER bit.

During input voltage, current, JEITA cool or thermal regulation, the safety timer counts at half clock rate as the actual charge current is likely to be below the register setting. For example, if the charger is in input current regulation (IDPM_STAT = 1) throughout the whole charging cycle, and the safety time is set to 5 hours, the safety timer will expire in 10 hours. This half clock rate feature can be disabled by writing 0 to TMR2X_EN bit.

During the fault, timer is suspended. Once the fault goes away, fault resumes. If user stops the current charging cycle, and start again, timer gets reset (toggle nCE pin or CHRG_CONFIG bit).

MINIMUM SYS VOLTAGE

Because the rail that provide power to system is SYS voltage, so to make sure the system always has enough voltage, ETA6963 provide minimum SYS voltage selection. The minimum system voltage is set by SYS_MIN[2:0] bits. Even with a fully depleted battery, the system is regulated above the minimum system voltage (default 3.5 V).

When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode), and the system is typically 180 mV above the minimum system voltage setting. As the battery voltage rises above the minimum system voltage, BATFET is fully on and the voltage difference between the system and battery is the V_{DS} of BATFET.

When the battery charging is disabled and above minimum system voltage setting or charging is terminated, the system is always regulated at typically 70mV above battery voltage. The status register VSYS_STAT bit goes high when the system is in minimum system voltage regulation.

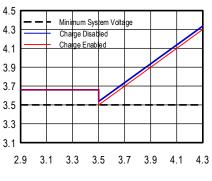


Figure 3: System Voltage vs Battery Voltage

DYNAMIC POWER MANAGEMENT

To meet maximum current limit in USB spec and avoid over loading the adapter, the device features Dynamic Power management (DPM), which continuously monitors the input current and input voltage. When input source is over-loaded, either the current exceeds the input current limit (I_{INDPM}) or the voltage falls below the input voltage limit (V_{INDPM}). The device then reduces the charge current until the input current falls below the input current limit and the input voltage rises above the input voltage limit.

When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to drop. Once the system voltage falls below the battery voltage, the device automatically enters the supplement mode where the BATFET turns on and battery starts discharging so that the system is supported from both the input source and battery.

During DPM mode, the status register bits VDPM_STAT (V_{INDPM}) or IDPM_STAT (I_{INDPM}) goes high.

SUPPLEMENT MODE

When the system voltage falls 10 mV ($V_{BAT} > V_{SYSMIN}$ when Q4 is full on. In this condition, discharge current is almost 1A.) or 20mV ($V_{BAT} < V_{SYSMIN}$ when Q4 is in regulation. In this condition, gate of Q4 is regulated at about only threshold voltage of the FET, then discharge current is almost zero.) below the battery voltage, the BATFET turns on and the BATFET gate is regulated the gate drive of BATFET so that the minimum BATFET V_{DS} stays at 30 mV when the current is low. This prevents oscillation from entering and exiting the supplement mode.

As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until the BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge current. Following figure shows the V-I curve of the BATFET gate regulation operation. BATFET turns off to exit supplement mode when the battery is below battery depletion threshold.

BATFET DISALBE MODE (SHIPPING MODE)

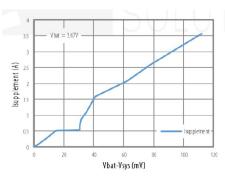


Figure 4: BATFET Current at Entering

Supplement Mode

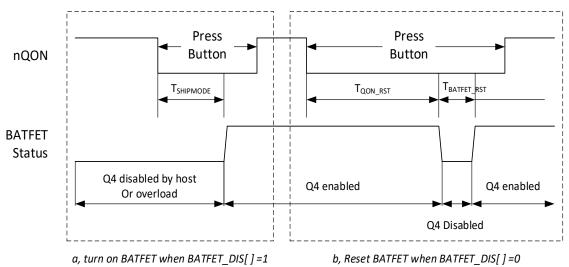
To extend battery life and minimize power when system is powered off during system idle, shipping, or storage, the device can turn off BATFET so that the system voltage is zero to minimize the battery leakage current. When the host set BATFET_DIS bit, the charger can turn off BATFET immediately or delay by t_{SM_DLY} as configured by BATFET_DLY bit.

BATFET ENABLE (EXIT SHIPPING MODE)

When the BATFET is disabled (in shipping mode) and indicated by setting BATFET_DIS, one of the following events can enable BATFET to restore system power:

- 1. Plug in adapter
- 2. Clear BATFET_DIS bit
- 3. Set REG_RST bit to reset all registers including BATFET_DIS bit to default (0)

4. A logic high to low transition on nQON pin with t_{SHIPMODE} deglitch time (1.15s typical) to enable BATFET to exit shipping mode

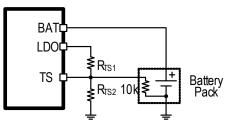

BATFET FULL SYSTEM RESET

The BATFET functions as a load switch between battery and system when input source is not plugged-in. By changing the state of BATFET from on to off, systems connected to SYS can be effectively forced to have a poweron-reset. The nQON pin supports push-button interface to reset system power without host by changing the state of BATFET.

When the QON pin is driven to logic low for $t_{QON_{RST}}$ while input source is not plugged in and BATFET is enabled (BATFET_DIS = 0), the BATFET is turned off for $t_{BATFET_{RST}}$ and then it is re-enabled to reset system power. This function can be disabled by setting BATFET_RST_EN bit to 0.

nQON PIN OPERATION

Internally, there is a 500K pull up resistor from nQON pin to V_{DD} (maximum of V_{BAT} and V_{LDO}). So default, nQON will be high. Then nQON logic low and high voltage threshold are 0.68V and 0.88V respectively. The nQON pin incorporates two functions to control BATFET.


Figure 5: nQON Timing

- 1. BATFET Enable: A nQON logic transition from high to low with longer than t_{SHIPMODE} deglitch turns on BATFET and exit shipping mode
- BATFET Reset: When nQON is driven to logic low by at least t_{QON_RST} (12s typical) while adapter is not plugged in (and BATFET_DIS = 0), the BATFET is turned off for t_{BATFET_RST} (10s typical). The BATFET is reenabled after t_{BATFET_RST} duration. This function allows systems connected to SYS to have power-on-reset. This function can be disabled by setting BATFET_RST_EN bit to 0.

THERMISTOR QUALIFICATION DURING

CHARGING MODE

The charger device provides a single thermistor input for battery temperature monitor.

To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high temperature ranges.

To initiate a charge cycle, the voltage on TS pin must be within the V_{T1} to V_{T5} thresholds. If TS voltage exceeds the T1-T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5 range. At cool temperature (T1-T2), JEITA recommends the charge current to be reduced to half of the charge current or lower. At warm temperature (T3-T5), JEITA recommends charge voltage less than 4.1V.

The charger provides flexible voltage/current settings beyond the JEITA requirement. The voltage setting at warm temperature (T3-T5) can be V_{REG} or 4.1V (configured by JEITA_VSET). The current setting at cool temperature (T1-T2) can be further reduced to 20% of fast charge current (JEITA ISET).

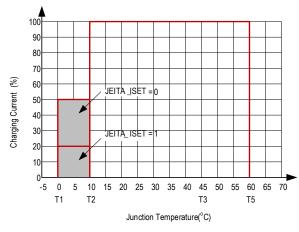


Figure 7: JEITA Profile: Charging Current

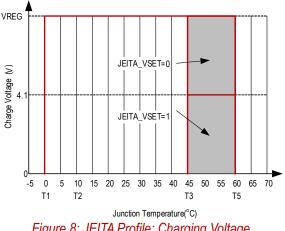


Figure 8: JEITA Profile: Charging Voltage

The resistor bias network has been updated as below.

$$R_{TS1} = \frac{\left(\frac{V_{LDO}}{V_{T1}} - 1\right)}{\frac{1}{R_{TS2}} + \frac{1}{R_{TH_{COLD}}}} \qquad R_{TS2} = \frac{V_{LDO} \times R_{TH_{COLD}} \times R_{TH_{HOT}} \times \left(\frac{1}{V_{T1}} - \frac{1}{V_{T5}}\right)}{R_{TH_{HOT}} \times \left(\frac{V_{LDO}}{V_{T5}} - 1\right) - R_{TH_{COLD}} \times \left(\frac{V_{LDO}}{V_{T1}} - 1\right)}$$

THERMISTOR QUALIFICATION DURING BATTERY DISCHARGE MODE

For battery protection during boost mode, the device monitors the battery temperature to be within the V_{BCOLD} to V_{BHOT} thresholds. When temperature is outside of the temperature thresholds, the boost mode is suspended. in additional, VBUS STAT bits are set to 000 and NTC FAULT is reported. Once temperature returns within thresholds, the boost mode is recovered and NTC_FAULT is cleared.

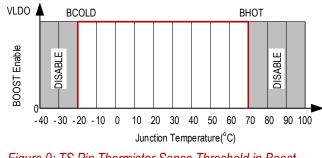


Figure 9: TS Pin Thermistor Sense Threshold in Boost

CHARGING STATUS INDICATION ON STAT PIN

The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED. The STAT pin function can be disabled by setting the STAT_CONFIG[1:0] = 11. When STAT_CONFIG[1:0] = 00, STAT indication operates as shown as in below table.

Table 4 STAT Indication table

CHARGE STATE	STAT INDICATION
Charging in progress (including recharge)	LOW
Charging complete	HIGH
Sleep mode, charge disable	HIGH
Charge suspend (input overvoltage, TS fault, timer fault or system overvoltage) Boost Mode suspend (due to TS fault)	Blinking at 1Hz (0.5s LOW / 0.5s HIZ)

HOST INTERRUPT ON nINT PIN

ETA6963 provides a comfortable feature that host does not need to always monitor the charger operation. The nINT pulse notifies the system on the device operation. The following events will generate 256µs INT pulse.

- > USB/Adapter Source Detection (through DP/DM pins)
- > BUS Pass Poor Source Detection
- Input removed
- > Charge Complete
- > Any FAULT event in REG09
- > V_{INDPM} event detected. Masked by VINDPM_INT_ MASK = 1.
- > I_{INDPM} event detected. Masked by IINDPM_INT_ MASK = 1.

When a fault occurs, the charger device sends out nINT and keeps the fault state in REG09 until the host reads the fault register. Before the host reads REG09 and all the faults are cleared, the charger device would not send any INT upon new faults. To read the current fault status, the host has to read REG09 two times consecutively. The first read reports the pre-existing fault register status and the second read reports the current fault register status.

INPUT OVERVOLTAGE PROTECTION IN CHARGE MODE (ACOV)

If V_{BUS} exceeds the V_{BUS} over voltage threshold V_{BUS_OV} (programmable via OVP[1:0] bits) the device stops switching immediately. During input overvoltage event, the fault register CHRG_FAULT bits are set to 01. An nINT pulse is asserted to the host. The device will automatically resume normal operation once the input voltage drops back below the OVP threshold.

SYSTEM OVERVOLTAGE PROTOECTION IN CHARGE MODE (SYSOVP)

The charger device clamps the system voltage during load transient so that the components connect to system would not be damaged due to high voltage. SYSOVP threshold is 14% above system regulation voltage. Upon SYSOVP, converter stops immediately to clamp the overshoot.

BUS OUTPUT SHORT PROTECTION IN BOOST MODE

The device monitors boost output voltage and other conditions to provide output short circuit and overvoltage protection. The Boost build-in accurate constant current regulation to allow OTG to adaptive to various types of load. If short circuit is detected on V_{BUS} , the Boost turns off and retry 7 times. If retries are not successful, OTG is disabled with OTG_CONFIG bit cleared. In addition, the BOOST_FAULT bit is set and an nINT pulse is generated. The BOOST_FAULT bit can be cleared by host by re-enabling boost mode

BUS OVERVOLTAGE PROTECTION IN BOOST MODE

When the V_{BUS} rises above regulation target and exceeds the over voltage threshold V_{OTG_OVP} , the device enters overvoltage protection which stops switching, clears OTG_CONFIG bit and exits boost mode. At Boost overvoltage

duration, the fault register bit (BOOST_FAULT) is set high to indicate fault in boost operation. An nINT pulse is also asserted to the host.

THERMAL REGULATION IN BUCK MODE

The ETA6963 monitors the internal junction temperature T_J to avoid overheat the chip and limits the IC surface temperature at 110°C in buck mode. When the internal junction temperature exceeds thermal regulation limit (110°C), the device lowers down the charge current. During thermal regulation, the actual charging current is usually below the programmed battery charging current. Therefore, termination is disabled, the safety timer runs at half the clock rate, and the status register THERM_STAT bit goes high.

Thermal limit is programmable to 90°C by programming TREG bit.

THERMAL SHUTDOWN

The device monitors the internal junction temperature to provide thermal shutdown during any mode. When IC surface temperature exceeds T_{SHUT} (160°C) ,BATFET and Converter are disabled. OTG_CONFIG bit is cleared if in BOOST mode and BOOST_FAULT bit is set. In Charge mode, CHARGE_FAULT bit is set. An nINT pulse is asserted to the host.

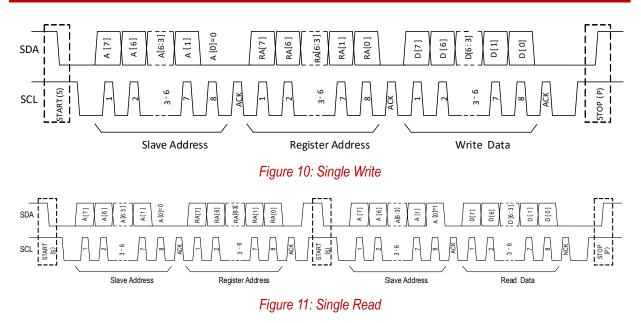
When IC temperature is T_{SHUT_HYS} (30°C) below T_{SHUT} (160°C), The BATFET and charger are enabled following enable condition, Boost can be enabled by host.

BATTERY OVER-VOLTAGE PROTECTION

The battery overvoltage limit is clamped at 7% above the battery regulation voltage. When battery over voltage occurs, the charger device immediately disables charge. The fault register BAT_FAULT bit goes high and an nINT pulse is asserted to the host

BATTERY OVER-DISCHARGE PROTECTION

When battery is discharged below the battery depletion falling threshold $V_{BAT_DPL_FALL}$, the BATFET is turned off to protect battery from over discharge. To recover from over discharge, an input source is required at V_{BUS} . When an input source is plugged in, the BATFET turns on. The battery is charged with I_{SHORT} (typically 150 mA) current when the V_{BAT} is smaller than the trickle charge voltage threshold V_{SHORT} , or pre-charge current as set in I_{PRECHG} register when the battery voltage is between V_{SHORT} and the pre-charge voltage threshold V_{BAT_LOWV} .


SYSTEM OVER-CURRENT PROTECTION

When the system is shorted or significantly overloaded ($I_{BAT} > I_{BATOP}$) so that its current exceeds the overcurrent limit, the device latches off BATFET. Section BATFET Enable (Exit Shipping Mode) can reset the latch-off condition and turn on BATFET.

I²C COMMUNICATION

The device uses I²C compatible interface for flexible charging parameter programming and instantaneous device status reporting. I²CTM is a bi-directional 2 wire serial interface developed by Philips Semiconductor (now NXP Semiconductors). Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). Devices can be considered as masters or slaves when performing data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

The device operates as a slave device with address D6H, receiving control inputs from the master device like micro controller or a digital signal processor through REG00-REG0B. The I2C interface supports both standard mode (up to 100kbits), and fast mode (up to 400kbits), connecting to the positive supply voltage via a current source or pull-up resistor. When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain.

Device address is understood value of A[7:0] while A[0] is "0". This is also the address to write the data to the device registers. To read data from register, sending the command to address with A[0] is "1". Register address are in RA[7:0]. Data to or from register are D[7:0].

REGISTER MAP

Table 5: REG00

BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	NOTE
7	EN_HIZ	0	R/W	by REG_RST	0-Disable, 1-Enable	Enable HIZ Mode
				by Watchdog		0-Disable (default)
						1-Enable
6	EN_ICHG_MON[1]	0	R/W	by REG_RST	00 - Enable STAT pin	
5	EN_ICHG_MON[0]	0			function	
					(default)	
					01 - Reserved	
					10 - Reserved	
					11 - Disable STAT pin	
					function	
					(float pin)	
4	IINDPM[4]	1	R/W	by REG_RST	1600 mA	Input Current Limit
3	IINDPM[3]	0	R/W	by REG_RST	800 mA	Offset: 100 mA
2	IINDPM[2]	1	R/W	by REG_RST	400 mA	Range: 100 mA (000000) – 3.2
1	IINDPM[1]	1	R/W	by REG_RST	200 mA	A (11111)
0	IINDPM[0]	1	R/W	by REG_RST	100 mA	Default:2400 mA (10111),
						maximum input current limit, not
						typical.
						IINDPM bits are changed
						automatically after input source
						detection is completed
						Host can over-write IINDPM
						register bits after input source
						detection is completed.

Table 6: REG01

BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	NOTE
7	PFM _DIS	0	R/W	by REG_RST	0 – Enable PFM	Default: 0 - Enable
					1 – Disable PFM	
6	WD_RST	0	R/W	by REG_RST	I ² C Watchdog Timer	Default: Normal (0) Back to 0 after
				by Watchdog	Reset	watchdog timer reset
					0 –Normal; 1 – Reset	
5	OTG_CONFIG	0	R/W	by REG_RST	0 – OTG Disable	Default: OTG disable (0)
				by Watchdog	1 – OTG Enable	Note:
						1. OTG_CONFIG would over-ride
						Charge Enable Function in
						CHG_CONFIG

Table	6: REG01		1	1		1
BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	NOTE
4	CHG_CONFIG	1	R/W	by REG_RST	0 - Charge Disable	Default: Charge Battery (1)
				by Watchdog	1- Charge Enable	Note: Charge is enabled when
						both CE pin is pulled low AND
						CHG_CONFIG bit is 1
3	SYS_Min[2]	1	R/W	by REG_RST	System Minimum	000: 2.6 V 001: 2.8 V
2	SYS_Min[1]	0	R/W	by REG_RST	Voltage	010: 3 V 011: 3.2 V
1	SYS_Min[0]	1	R/W	by REG_RST		100: 3.4 V 101: 3.5 V
						110: 3.6 V 111: 3.7 V
						Default: 3.5 V (101)
0	Min_VBAT_SEL	0	R/W	by REG_RST	0 – 2.8 V BAT falling,	Minimum battery voltage for OTG
					1 – 2.5 V BAT falling	mode. Default falling 2.8 V (0);
						Rising threshold 3.0 V (0)
Table	7: REG02				1	
BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	NOTE
7	BOOST_LIM	1	R/W	by REG_RST	0 = 0.5 A	Default: 1.2 A (1)
				by Watchdog	1 = 1.2 A	Note:
						The current limit options listed
						are minimum current limit
						specs.
6	Q1_FULLON	0	R/W	by REG_RST	0 – Use higher Q1	In boost mode, full FET is
					RDSON when	always used and this bit has
					programmed IINDPM <	
					700mA (better accuracy	
					1 – Use lower Q1 RDS0	
					always (better efficiency	
5	ICHG[5]	1	R/W	by REG_RST	1920 mA	Fast Charge Current
				by Watchdog		Default: 2040mA (100010)
4	ICHG[4]	0	R/W	by REG_RST	960 mA	Range: 0 mA (0000000) -
				by Watchdog		3000mA (110010)
						Note:
						$I_{CHG} = 0$ mA disables charge.
						I _{CHG} > 3000 mA (110010)
3	ICHG[3]	0	R/W	by REG_RST	480 mA	clamped to register value
				by Watchdog		3000 mA (110010)
2	ICHG[2]	0	R/W	by REG_RST	240mA	
				by Watchdog		
1	ICHG[1]	1	R/W	by REG_RST	120mA	
				by Watchdog		
0	ICHG[0]	0	R/W	by REG_RST	60mA	
				by Watchdog		

Table	8: REG03					
BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	NOTE
7	IPRECHG[3]	0	R/W	by REG_RST	480mA	Precharge Current
				by Watchdog		Default: 180 mA (0010)
6	IPRECHG[2]	0	R/W	by REG_RST	240mA	Offset: 60 mA
				by Watchdog		Note: I _{PRECHG} > 780 mA
5	IPRECHG[1]	1	R/W	by REG_RST	120mA	clamped to 780 mA (1100)
				by Watchdog		
4	IPRECHG[0]	0	R/W	by REG_RST	60mA	
				by Watchdog		
3	ITERM[3]	0	R/W	by REG_RST	480mA	Termination Current
				by Watchdog		Default: 180 mA (0010)
2	ITERM[2]	0	R/W	by REG_RST	240mA	Offset: 60 mA
				by Watchdog		
1	ITERM[1]	1	R/W	by REG_RST	120mA	
				by Watchdog		
0	ITERM[0]	0	R/W	by REG_RST	60mA	
				by Watchdog		

Table 9: REG04

BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	NOTE
7	VREG[4]	0	R/W	by REG_RST	512mV	Charge Voltage Offset: 3.848 V
				by Watchdog		Range: 3.848 V to 4.616 V (11000)
6	VREG[3]	1	R/W	by REG_RST	256mV	Default: 4.2 V (01011)
				by Watchdog		Note: Value above 11000 is
5	VREG[2]	0	R/W	by REG_RST	128mV	clamped to register value 11000
				by Watchdog		(4.616 V)
4	VREG[1]	1	R/W	by REG_RST	64mV	
				by Watchdog		
3	VREG[0]	1	R/W	by REG_RST	32mV	
				by Watchdog		
2	TOPOFF_TIME	0	R/W	by REG_RST	00 – Disabled	The extended time following the
	R[1]			by Watchdog	(Default)	termination condition is met. When
1	TOPOFF_TIME	0	R/W	by REG_RST	01 – 15 minutes	disabled, charge terminated when
	R[0]			by Watchdog	10 – 30 minutes	termination conditions are met.
					11 – 45 minutes	
0	VRECHG	0	R/W	by REG_RST	0 – 120 mV	Recharge threshold Default: 120mV
				by Watchdog	1 – 240 mV	

Table	10: REG05		r	1		r
BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	NOTE
7	EN_TERM	1	R/W	by REG_RST	0 – Disable	Default:
				by Watchdog	1 - Enable	Enable termination (1)
6	Reserved	0	R/W	by REG_RST	Reserved	Reserved
				by Watchdog		
5	WATCHDOG[1]	0	R/W	by REG_RST	00 – Disable timer	Default: 40s (01)
				by Watchdog	01 – 40s	
4	WATCHDOG[0]	1	R/W	by REG_RST	10 – 80s	
				by Watchdog	11 – 160s	
3	EN_TIMER	1	R/W	by REG_RST	0 – Disable	Default: Enable (1)
				by Watchdog	1 – Enable both fast	
					charge and pre-	
					charge timer	
2	CHG_TIMER	1	R/W	by REG_RST	0 – 5 hrs	Default: 10 hours (1)
				by Watchdog	1 – 10 hrs	
1	TREG	1	R/W	by REG_RST	Thermal Regulation	Default: 110°C (1)
				by Watchdog	Threshold:	
					0 - 90°C	
					1 - 110°C	
0	JEITA_ISET	1	R/W	by REG_RST	0 – 50% of ICHG	Default: 20% (1)
	(0°C-10°C)			by Watchdog	1 – 20% of ICHG	

Table 10: DEC05

Table 11: REG06

BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	NOTE
7	OVP[1]	0	R/W	by REG_RST	Default: 6.5V (01)	VBUS_OVP threshold:
6	OVP[0]	1	R/W	by REG_RST		00 - 5.5 V
						01 – 6.5 V (5V input)
						10 – 10.5 V (9V input)
						11 – 14 V (12V input)
5	BOOSTV[1]	1	R/W	by REG_RST	Default: 5.15V (10)	Boost Regulation Voltage:
4	BOOSTV[0]	0	R/W	by REG_RST		00 - 4.85V 01 - 5.00V
_						10 - 5.15V 11 - 5.30V
3	VINDPM[3]	0	R/W	by REG_RST	800mV	Absolute VINDPM Threshold Offset:
2	VINDPM[2]	1	R/W	by REG_RST	400mV	3.9 V
1	VINDPM[1]	1	R/W	by REG_RST	200mV	Range: 3.9 V (0000) – 5.4 V (1111)
0	VINDPM[0]	0	R/W	by REG_RST	100mV	Default: 4.5V (0110)

Table 12: REG07

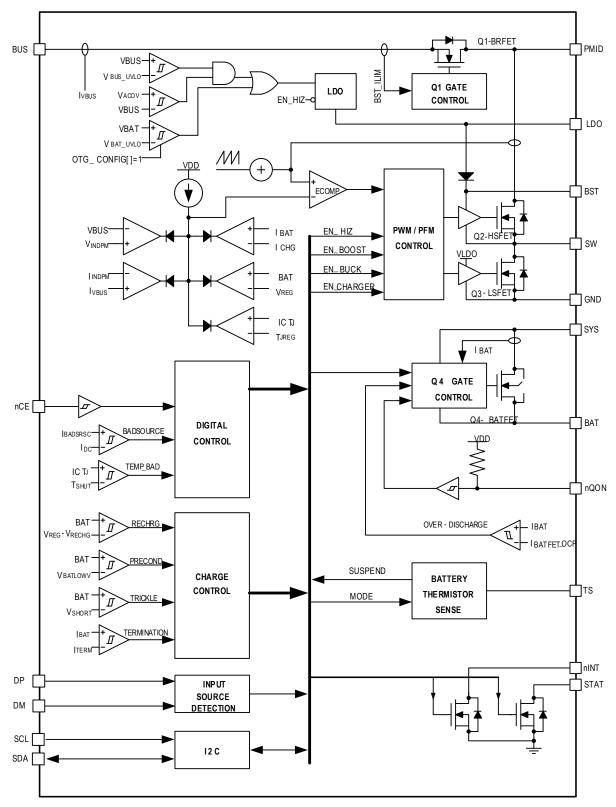
BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	NOTE
7	IINDET_EN	0	R/W	by REG_RST by Watchdog	0 - Not in input current limit detection	Returns to 0 after input detection is complete
				by Matonaog	1 - Force input current limit	
					detection when VBUS is	
					present	
6	TMR2X_EN	1	R/W	by REG_RST	0 – Disable	
				by Watchdog	1 – Safety timer slowed by	
					2X during input DPM (both	
					V and I) or JEITA cool, or	
					thermal regulation	
5	BATFET_DIS	0	R/W	by REG_RST	0 – Allow Q4 turn on, 1 –	Default: Allow Q4 turn on (0)
					Turn off Q4 with	
					TBATFET_DLY delay time	
					(REG07[3])	
4	JEITA_VSET	0	R/W	by REG_RST	0 – Set Charge Voltage to	
				by Watchdog	4.1V (max),	
					1 - Set Charge Voltage to	
					VREG	
3	BATFET_DLY	1	R/W	by REG_RST	0 – Turn off BATFET	Default: 1
				· –	immediately when	Turn off BATFET after
					BATFET_DIS bit is set	TBATFET_DLY (typ. 10s) when
					1 –Turn off BATFET after	BATFET_DIS bit is set
					TBATFET_DLY (typ. 10s)	
					when BATFET_DIS bit is	
					set	
2	BATFET_RST	1	R/W	by REG_RST	0 – Disable BATFET reset	Default: 1
	_EN			by Watchdog	function	Enable BATFET reset function
					1 – Enable BATFET reset	
					function	
1	VDPM_BAT_	0	R/W	by REG_RST	00 - Disable function	Sets VINDPM to track BAT
	TRACK[1]	0			(VINDPM set by register)	voltage. Actual VINDPM is
0	VDPM_BAT_	0	R/W	by REG_RST	$01 - V_{BAT} + 200 mV$	higher of register value and
	TRACK[0]				$10 - V_{BAT} + 250mV$	VBAT + VDPM_BAT_TRACK
					11 - V _{BAT} + 300mV	

Table 13: REG08

BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION
7	VBUS_STAT[2]	Х	R	NA	V _{BUS} Status register
6	VBUS_STAT[1]	Х	R	NA	000: No input
5	VBUS_STAT[0]	Х	R	NA	001: USB Host SDP
					010: USB CDP: (1.5A)
					011: USB DCP (2.4 A)
					101: Unknown Adapter (500 mA)
					110: Non-Standard Adapter (1A/2A/2.1A/2.4A)
					111: OTG
					Software current limit is reported in IINDPM register
4	CHRG_STAT[1]	Х	R	NA	Charging status:
3	CHRG_STAT[0]	Х	R	NA	00 – Not Charging 01 – Pre-charge (< V _{BATLOW})
					10 – Fast Charging 11 – Charge Termination
2	PG_STAT	Х	R	NA	Power Good status:
					0 – Power Not Good 1 – Power Good
1	THERM_STAT	Х	R	NA	0 – Not in thermal regulation 1 – in thermal regulation
0	VSYS_STAT	Х	R	NA	0 – Not in V _{SYS_MIN} regulation (V _{BAT} > V _{SYS_MIN})
					1 – in Vsys_min regulation (VBAT < Vsys_min)

Table 14: REG09

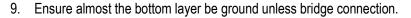
BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION
7	WATCHDOG_FA	Х	R	NA	0 – Normal, 1- Watchdog timer expiration
	ULT				
6	BOOST_FAULT	Х	R	NA	0 – Normal, 1 – V _{BUS} overloaded in OTG, or V _{BUS_OVP} , or
					battery is too low (any conditions that we cannot start boost
					function)
5	CHRG_FAULT[1]	Х	R	NA	00 – Normal, 01 – input fault (V _{BUS_OVP} or V _{BAT} < V _{BUS} < 3.8
					V)
4	CHRG_FAULT[0]	Х	R	NA	10 -Thermal shutdown, 11 – Charge Safety Timer
					Expiration
3	BAT_FAULT	Х	R	NA	0 – Normal, 1 – BATOVP
2	NTC_FAULT[2]	Х	R	NA	JEITA
1	NTC_FAULT[1]	Х	R	NA	000 – Normal, 010 – Warm, 011 – Cool, 101 – Cold, 110 –
0	NTC_FAULT[0]	Х	R	NA	Hot (Buck mode)
					000 – Normal, 101 – Cold, 110 – Hot (Boost mode)

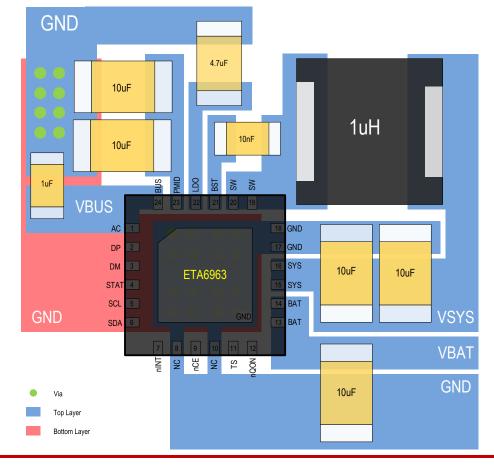

Table 15: REG0A

BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION	
7	VBUS_GD	Х	R	NA	0 – Not V _{BUS} attached	1 – V _{BUS} Attached
6	VINDPM_STAT	Х	R	NA	0 – Not in VINDPM	1 – in VINDPM
5	IINDPM_STAT	Х	R	NA	0 – Not in IINDPM	1 – in IINDPM
4	Reserved	Х	R	NA	Reserved	Reserved
3	TOPOFF_ACTIVE	Х	R	NA	0 – Top off timer not counting	1 – Top off timer counting
2	ACOV_STAT	Х	R	NA	0 – Device is NOT in ACOV	1 – Device is in ACOV
1	VINDPM_INT_ MASK	0	R/W	by REG_RST	0 - Allow VINDPM INT pulse	1 - Mask VINDPM INT pulse
0	VINDPM_INT_ MASK	0	R/W	by REG_RST	0 - Allow IINDPM INT pulse	1 - Mask IINDPM INT pulse

Table 16: REG0B

BIT	NAME	POR	TYPE	RESET BY	DESCRIPTION		
7	REG_RST	Х	R/W	NA	Register reset		
					0 – Keep current register setting		
					1 - Reset to default register value and reset safety timer		
					Note: Bit resets to 0 after register reset is completed		
6	PIN[3]	0	R	NA	ETA6963: 0111		
5	PIN[2]	1	R	NA			
4	PIN[1]	1	R	NA			
3	PIN[0]	1	R	NA			
2	ETA_PART ID	1	R	NA	ETA Part ID for recognition		
1	DEV_REV[1]	Х	R	NA			
0	DEV_REV[0]	Х	R	NA			

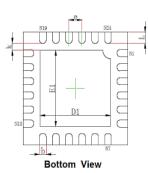

FUNCTION BLOCK DIAGRAM

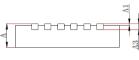


PCB DESIGN GUIDELINE

In order to have as clean as possible supply for converter, please follow following suggestion:

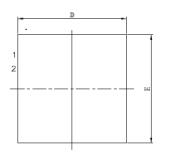
- Place the BUS, PMID, BAT, SYS, LDO capacitor as close as possible to the pins and wide bottom layer for PGND connections. Also add as much as possible vias for PGND to minimize copper resistance added to PMID capacitor.
- Place inductor input pin to SW pin as close as possible. Minimize the copper area of this trace to lower electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other trace or plane.
- Put output capacitor near to the inductor and the device. Ground connections need to be tied to the IC ground with a short copper trace connection or GND plane.
- 4. Use thermal pad as the single ground connection point.
- 5. Use single ground connection to tie charger power ground to charger analog ground. Just beneath the device. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.
- 6. Place decoupling capacitors next to the IC pins and make trace connection as short as possible.
- It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on the other layers.
- 8. Ensure that the number and sizes of vias allow enough copper for a given current path.



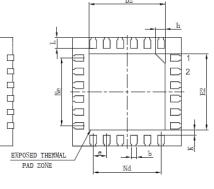

PACKAGE OUTLINE

QFN4x4-24

From assembly house 1:

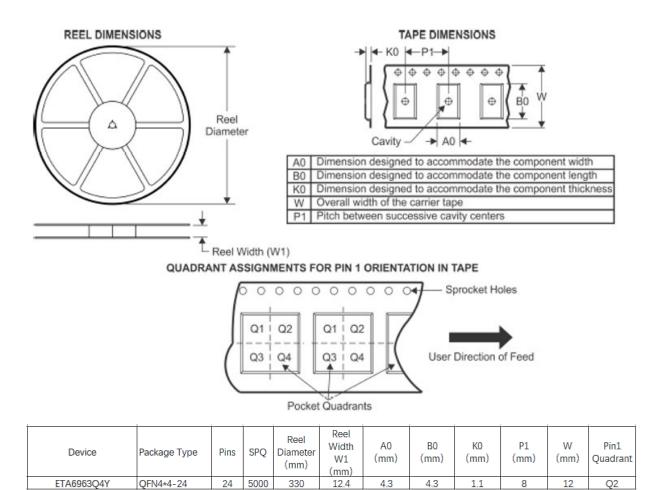


Side View


Dimensions In Millimeters Dimensions In Inches Symbol Min. Max. Min. Max. 0.700/0.800 0.800/0.900 0.028/0.031 0.031/0.035 А 0.050 0.000 0.002 A1 0.000 0.203REF. 0.008REF. A3 D 3.924 4.076 0.154 0.160 Е 3.924 4.076 0.154 0.160 D1 2.600 2.800 0.102 0.110 E1 2.600 0.102 0.110 2.800 0.200MIN. 0.008MIN. k 0.200 0.300 0.008 0.012 b 0.500TYP. 0.020TYP. е 0.324 0.476 0.013 0.019 L

From assembly house 2:

TOP VIEW



BOTTOM VIEW

	M	TIMET	70		
SYMBOL	MILLIMETER MIN NOM MAX				
	0.70	0.75	0.80		
A	0.85	0.90	0.95		
	0.80	0.85	0.90		
A1	—	0.02	0.05		
b	0.18	0.25	0.30		
с	0.18	0.20	0.25		
D	3. 90	4.00	4.10		
D 2	2. 70	2.80	2. 90		
е	0. 50BSC				
Ne	2. 50BSC				
Nd	2. 50BSC				
Е	3. 90	4.00	4. 10		
E2	2. 70	2.80	2. 90		
L	0.35	0.40	0.45		
K	0.15	0.20	0.25		
h	0.30	0.35	0.40		
L/F载体尺寸	2.9X2.9				

TAPE AND REEL INFORMATION

