8-Bit Dual-Supply Translating Transceiver with Configurable Voltage Translation; 3-State Outputs

GENERAL DESCRIPTION

The 74AVC8T245 is an 8-bit, dual-supply translating transceiver with configurable voltage translation. The supply voltage (V_{CCA} and V_{CCB}) pins accept any voltage from 0.8V to 3.6V. This makes the device suitable for low voltage bidirectional translation voltage nodes of 0.8V, 1.2V, 1.5V, 1.8V, 2.5V and 3.3V.

The An and Bn are 8-bit input-output ports. DIR is the direction control input pin and \overline{OE} is the output enable input pin. V_{CCA} and V_{CCB} are the dual supply pins. Pins An, \overline{OE} and DIR are referenced to V_{CCA} and pins Bn are referenced to V_{CCB} . The DIR input determines the direction of the data flow. When DIR is high, it transmits data from An ports to Bn ports. When DIR is low, it transmits data from Bn ports to An ports. The output enable (\overline{OE}) input disables both An and Bn ports when it is high, so the buses are effectively isolated.

For partial power-down applications with power-off leakage current (I_{OFF}), this device is fully specified. The I_{OFF} circuitry makes the output disabled. When it is powered down, the damaging backflow current will be prevented from passing through the device. In suspend mode, both An and Bn ports are in the high-impedance state if either V_{CCA} or V_{CCB} is at GND.

FEATURES

- V_{CCA} Supply Voltage Range: 0.8V to 3.6V
- V_{CCB} Supply Voltage Range: 0.8V to 3.6V
- Typical Data Rates:
 - 380Mbit/s (≥ 1.8V to 3.3V Translation)
 - + 260Mbit/s (≥ 1.1V to 3.3V Translation)
 - 260Mbit/s (≥ 1.1V to 2.5V Translation)
 - 210Mbit/s (≥ 1.1V to 1.8V Translation)
 - 150Mbit/s (≥ 1.1V to 1.5V Translation)
 - 100Mbit/s (≥ 1.1V to 1.2V Translation)
- Suspend Mode
- Maximum 3.6V Input Voltage
- No Current for I/O Ports in Power-Down Mode
- -40°C to +125°C Operating Temperature Range
- Available in a Green TQFN-5.5×3.5-24L Package

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
74AVC8T245	TQFN-5.5×3.5-24L	-40°C to +125°C	74AVC8T245XTQQ24G/TR	R43 XTQQ XXXXX	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXXX
Vendor Code
Trace Code
Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

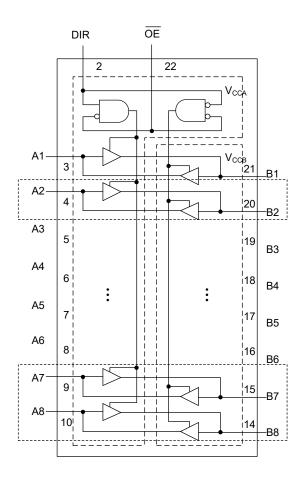
Supply Voltage Range, V _{CCA}	0.5V to 4.6V
Output Voltage Range, Vo	
Active Mode (2)(3)(4)0.5\	V to (V_{CCO} + 0.5 V)
Suspend or 3-State Mode (2)	0.5V to 4.6V
Output Current, I_O ($V_O = 0V$ to V_{CC})	±50mA
Supply Current, I _{CC} , per V _{CCA} or V _{CCB} Pin	100mA
Ground Current, I _{GND} , per GND Pin	100mA
Input Clamp Current, I _{IK} (V _I < 0)	50mA
Output Clamp Current, I _{OK} (V _O < 0)	50mA
Continuous Output Current	
Junction Temperature ⁽⁵⁾	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	8000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CCA} Supply Voltage Range, V _{CCB}	
Input Voltage Range, V _I	
Output Voltage Range, V _O	
Active Mode (3)	0V to V _{CCO}
Suspend or 3-State Mode	0V to 3.6V
Input Transition Rise and Fall Rate, $\Delta t/\Delta V$	(6)
V _{CCI} = 0.8V to 3.6V	10ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 3. V_{CCO} is the supply voltage associated with the output port.
- 4. V_{CCO} + 0.5V should not exceed 4.6V.
- 5. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.
- 6. V_{CCI} is the supply voltage associated with the input port.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

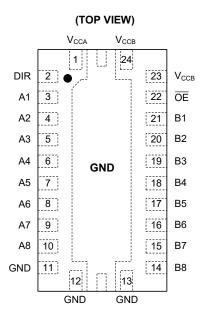
DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

LOGIC SYMBOL

FUNCTION TABLE

SUPPLY VOLTAGE	CONTRO	L INPUT	INPUT/OUTPUT			
V _{CCA} , V _{CCB}	ŌĒ	DIR	An	Bn		
0.8V to 3.6V	L	L	An = Bn	Inputs		
0.8V to 3.6V	L	Н	Inputs	Bn = An		
0.8V to 3.6V	Н	Х	Z	Z		
GND	Х	Х	Z	Z		


H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

PIN CONFIGURATION

TQFN-5.5×3.5-24L

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	V _{CCA}	Supply Voltage V _{CCA} .
2	DIR	Direction Control Input.
3, 4, 5, 6, 7, 8, 9, 10	A1, A2, A3, A4, A5, A6, A7, A8	Data Inputs/Outputs.
11, 12, 13	GND	Ground.
14, 15, 16, 17, 18, 19, 20, 21	B8, B7, B6, B5, B4, B3, B2, B1	Data Inputs/Outputs.
22	ŌĒ	Output Enable Input (Active Low).
23, 24	V _{ССВ}	Supply Voltage V _{CCB} .

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, V_{CCI} is the supply voltage associated with the data input port; V_{CCO} is the supply voltage associated with the output port, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS				
High-Level Output Voltage	V _{OH}	$V_{CCA} = V_{CCB} = 0.8$	BV, V _I = V _{IH} , I _O = -1.5mA	+25°C		0.7		V				
Low-Level Output Voltage	V _{OL}	$V_{CCA} = V_{CCB} = 0.8$	3V, V _I = V _{IL} , I _O = 1.5mA	+25°C		0.1		V				
Input Leakage Current	l _i	$V_{CCA} = V_{CCB} = 0.8$ $V_{I} = 0V \text{ or } 3.6V$	3V to 3.6V, DIR, $\overline{\text{OE}}$ inputs,	Full		±0.01	±2	μΑ				
		$V_{CCA} = V_{CCB} = 3.6$	6V, A or B port, V ₀ = 0V or V _{CCO}	Full		±0.01	±2					
Off-State Output Current (1)	l _{oz}	$V_{CCA} = 3.6V, V_{CC}$ $V_{O} = 0V \text{ or } V_{CCO}$	_B = 0V, suspend mode A port,	Full		±0.01	±2	μA				
		$V_{CCA} = 0V, V_{CCB} = 0V \text{ or } V_{CCO}$	= 3.6V, suspend mode B port,	Full		±0.01	±2	1				
Power-Off Leakage		$V_{CCA} = 0V$, $V_{CCB} = V_1$ or $V_0 = 0V$ to 3	= 0.8V to 3.6V, A port, 3.6V	Full		±0.01	±2					
Current	I _{OFF}	$V_{CCB} = 0V$, $V_{CCA} = 0V$ or $V_{O} = 0V$ to 0	= 0.8V to 3.6V, B port, 3.6V	Full		±0.01	±2	μA				
Input Capacitance	Cı	$V_{CCA} = V_{CCB} = 3.3$	$\overline{\text{SV}}$, DIR, $\overline{\text{OE}}$ inputs, $V_1 = 0V$ or $3.3V$	+25°C		5		pF				
Input/Output Capacitance	C _{I/O}	$V_{CCA} = V_{CCB} = 3.3$	$3V$, A and B ports, $V_0 = 3.3V$ or $0V$	+25°C		8		pF				
		A port,	V_{CCA} = 0.8V to 3.6V, V_{CCB} = 0.8V to 3.6V	Full		0.4	35					
		$V_I = 0V \text{ or } V_{CCI}$	$V_{CCA} = 3.6V, V_{CCB} = 0V$	Full		0.01	35					
		I _O = 0A	V _{CCA} = 0V, V _{CCB} = 3.6V	Full	-12	-0.01						
		B port,	V_{CCA} = 0.8V to 3.6V, V_{CCB} = 0.8V to 3.6V	Full		0.4	35					
Supply Current	I _{cc}	$V_I = 0V$ or V_{CCI} ,	$V_{CCA} = 3.6V, V_{CCB} = 0V$	Full	-12	-0.01		μΑ				
		I _O = 0	V _{CCA} = 0V, V _{CCB} = 3.6V	Full		0.01	35					
		A plus B port ($I_{CCA} + I_{CCB}$), $I_O = 0A$, $V_I = 0V$ or V_{CCI} , $V_{CCA} = 0.8V$ to 3.6V, $V_{CCB} = 0.8V$ to 3.6V		Full		0.8	45					
			$c_A + I_{CCB}$), $I_O = 0A$, $V_I = 0V$ or V_{CCI} , $6V$, $V_{CCB} = 1.1V$ to $3.6V$	Full		0.8	45					

NOTE:

1. For I/O ports, the parameter I_{OZ} includes the input leakage current.

ELECTRICAL CHARACTERISTICS (continued)

(Full = -40°C to +125°C, V_{CCI} is the supply voltage associated with the data input port; V_{CCO} is the supply voltage associated with the output port, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
			V _{CCI} = 0.8V	Full	0.8 × V _{CCI}				
		Data innuta	V _{CCI} = 1.1V to 1.95V	Full	0.7 × V _{CCI}				
		Data inputs	V _{CCI} = 2.3V to 2.7V	Full	1.6				
High-Level Input	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V _{CCI} = 3.0V to 3.6V	Full	2			V	
Voltage	V _{IH}		V _{CCA} = 0.8V	Full	0.8 × V _{CCA}			V	
		DIR, ŌĒ	V _{CCA} = 1.1V to 1.95V	Full	0.7 × V _{CCA}				
		inputs	V _{CCA} = 2.3V to 2.7V	Full	1.6				
			V _{CCA} = 3.0V to 3.6V	Full	2				
			V _{CCI} = 0.8V	Full			0.3 × V _{CCI}		
		Data innuta	V _{CCI} = 1.1V to 1.95V	Full			0.35 × V _{CCI}		
		Data inputs DIR, OE inputs	V _{CCI} = 2.3V to 2.7V	Full			0.7	V	
Low-Level Input	V _{IL}		V _{CCI} = 3.0V to 3.6V	Full			0.8		
Voltage	VIL		V _{CCA} = 0.8V	Full			0.3 × V _{CCA}		
			V _{CCA} = 1.1V to 1.95V	Full			0.35 × V _{CCA}		
			V _{CCA} = 2.3V to 2.7V	Full			0.7		
			V _{CCA} = 3.0V to 3.6V	Full			0.8		
			I_{O} = -100 μ A, V_{CCA} = V_{CCB} = 0.8V to 3.6V	Full	V _{CCO} - 0.1				
			$I_0 = -3mA$, $V_{CCA} = V_{CCB} = 1.1V$	Full	0.85	1			
High-Level Output	V _{OH}	V _I = V _{IH}	I _O = -6mA, V _{CCA} = V _{CCB} = 1.4V	Full	1.05	1.26		V	
Voltage	V ОН	VI - VIH	I_{O} = -8mA, V_{CCA} = V_{CCB} = 1.65V	Full	1.2	1.5		V	
			I_{O} = -9mA, V_{CCA} = V_{CCB} = 2.3V	Full	1.75	2.1			
			I _O = -12mA, V _{CCA} = V _{CCB} = 3.0V	Full	2.3	2.8			
			I_{O} = 100 μ A, V_{CCA} = V_{CCB} = 0.8V to 3.6V	Full			0.1		
			I _O = 3mA, V _{CCA} = V _{CCB} = 1.1V	Full		0.11	0.25		
Low-Level Output		\ \ - \ \	I _O = 6mA, V _{CCA} = V _{CCB} = 1.4V	Full		0.19	0.35	,,	
Voltage	V _{OL}	$V_I = V_{IL}$	I _O = 8mA, V _{CCA} = V _{CCB} = 1.65V	Full		0.22	0.45	V	
		_	I _O = 9mA, V _{CCA} = V _{CCB} = 2.3V	Full		0.22	0.55		
			I _O = 12mA, V _{CCA} = V _{CCB} = 3.0V	Full		0.28	0.7		

ELECTRICAL CHARACTERISTICS (continued)

Typical Total Supply Current (I_{CCA} + I_{CCB})

(T_A = +25°C, unless otherwise noted.)

V		V _{CCB}											
V _{CCA}	0V	V8.0	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS					
0V	0	0.01	0.01	0.01	0.01	0.01	0.01	μA					
0.8V	0.01	0.05	0.05	0.05	0.05	0.2	0.6	μA					
1.2V	0.01	0.05	0.05	0.05	0.05	0.1	0.4	μA					
1.5V	0.01	0.05	0.05	0.05	0.05	0.05	0.3	μA					
1.8V	0.01	0.05	0.05	0.05	0.05	0.05	0.2	μA					
2.5V	0.01	0.2	0.1	0.1	0.05	0.05	0.05	μA					
3.3V	0.01	0.6	0.4	0.3	0.2	0.05	0.03	μA					

Typical Power Dissipation Capacitance

 $(T_A = +25^{\circ}C, V_{CCA} = V_{CCB}, unless otherwise noted.)$

PARAMETER	SYMBOL	CONDITIONS		UNITS						
PARAMETER	STWIBOL	CONDITIONS	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS	
		A port: (direction An to Bn), output enabled	1.1	1.1	1.2	1.2	1.3	1.4		
		A port: (direction An to Bn), output disabled	0.6	0.7	0.7	0.7	0.8	0.9	1	
	C	A port: (direction Bn to An), output enabled	13.3	13.5	13.5	13.7	14.5	15.3	, F	
Power Dissipation		A port: (direction Bn to An), output disabled	0.5	0.5	0.5	0.5	0.5	0.5		
Capacitance (1) (2)	C _{PD}	B port: (direction An to Bn), output enabled	13.7	13.7	14.0	14.3	15.0	15.7	pF	
		B port: (direction An to Bn), output disabled	0.5	0.5	0.5	0.5	0.5	0.5		
		B port: (direction Bn to An), output enabled	1.1	1.1	1.2	1.2	1.3	1.4		
		B port: (direction Bn to An), output disabled	0.6	0.7	0.7	0.7	0.8	0.9		

NOTES

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times {V_{CC}}^2 \times f_i \times N + \Sigma (C_L \times {V_{CC}}^2 \times f_o)$

where

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.

C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_O)$ = Sum of the outputs.

2. f_i = 10MHz; V_I = GND to V_{CC} ; t_R = t_F = 1ns; C_L = 0pF; R_L = ∞ .

DYNAMIC CHARACTERISTICS

Typical Dynamic Characteristics at $V_{CCA} = 0.8V$ and $T_A = +25^{\circ}C$

(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3, unless otherwise noted.)

PARAMETER	CVMDOL	CONDITIONS	V _{CCB}							
PARAMETER	SYMBOL	CONDITIONS	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS	
Down and the Dales		An to Bn	43	20	18	17	17	17		
Propagation Delay	t _{PD}	Bn to An	38	32	31	30	29	29	ns	
Disable Time	t _{DIS}	OE to An	37	37	35	35	35	33	ns	
Disable Time		OE to Bn	47	30	30	29	25	24		
For all La Time a	t _{EN}	OE to An	44	43	43	42	42	42		
Enable Time		OE to Bn	51	24	22	21	21	21	ns	

NOTE:

1. t_{PD} is the same as t_{PLH} and t_{PHL} ; t_{DIS} is the same as t_{PLZ} and t_{PHZ} ; t_{EN} is the same as t_{PZL} and t_{PZH} .

Typical Dynamic Characteristics at $V_{CCB} = 0.8V$ and $T_A = +25^{\circ}C$

(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3, unless otherwise noted.)

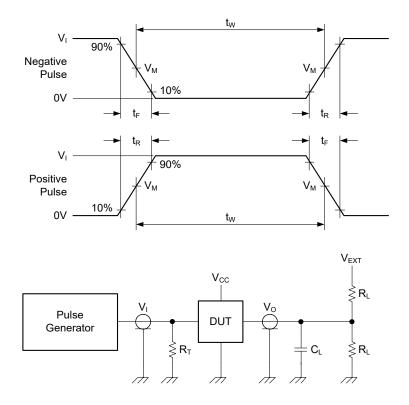
PARAMETER	SYMBOL	CONDITIONS		UNITS						
PARAMETER	STIMBOL	CONDITIONS	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	ONTO	
Dropogation Dolov		An to Bn	43	34	33	32	31	31	200	
Propagation Delay	t _{PD}	Bn to An	38	20	18	17	17	16	ns	
Disable Time	t _{DIS}	OE to An	37	14	11	9	8	6		
Disable Time		OE to Bn	47	34	30	30	27	26	ns	
Finable Time	t _{EN}	OE to An	44	13	14	7	5	4	ns	
Enable Time		OE to Bn	51	40	44	47	61	35		

NOTE:

1. t_{PD} is the same as t_{PLH} and t_{PHL} ; t_{DIS} is the same as t_{PLZ} and t_{PHZ} ; t_{EN} is the same as t_{PZL} and t_{PZH} .

DYNAMIC CHARACTERISTICS (continued)

Dynamic Characteristics


(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3, full = -40° C to $+125^{\circ}$ C, unless otherwise noted.)

							V	ССВ					
PARAMETER	SYMBOL	CONDITIONS	1.2V :	± 0.1V	1.5V :	± 0.1V	1.8V ±	0.15V	2.5V :	± 0.2V	3.3V :	± 0.3V	UNITS
			MIN (1)	MAX (1)									
V _{CCA} = 1.1V to 1.3V	1					•							
Daniel and the Control		An to Bn	0.5	20.4	0.5	14.9	0.5	13.8	0.5	12.5	0.3	11.8	
Propagation Delay	t _{PD}	Bn to An	0.5	20.4	0.5	15.7	0.5	14.9	0.5	13.8	0.5	13.2	ns
Disable Time	4	OE to An	0.5	25.5	0.5	25.5	0.5	25.5	0.5	25.5	0.5	25.5	
Disable Time	t _{DIS}	OE to Bn	0.5	25.5	0.5	20.8	0.5	20.6	0.5	19.4	0.5	19.8	ns
Frakla Tima		OE to An	0.5	26.3	0.5	26.3	0.5	26.3	0.5	26.3	0.5	26.3	
Enable Time	t _{EN}	OE to Bn	0.5	26.3	0.5	22.1	0.5	21.2	0.5	21.1	0.5	20.9	ns
V _{CCA} = 1.4V to 1.6V	1												
Decreased as Dalay		An to Bn	0.5	15.7	0.5	11.2	0.5	9.9	0.3	8.4	0.3	8.0	
Propagation Delay	t _{PD}	Bn to An	0.5	14.9	0.5	11.2	0.5	10.0	0.5	8.9	0.5	8.2	ns
Disable Time		OE to An	0.5	16.0	0.5	16.0	0.5	16.0	0.5	16.0	0.5	16.0	
Disable Time	t _{DIS}	OE to Bn	0.5	19.8	0.5	16.0	0.5	14.6	0.5	13.4	0.5	13.2	ns
Frakla Tima		OE to An	0.5	13.5	0.5	13.5	0.5	13.5	0.5	13.5	0.5	13.5	ne
Enable Time	t _{EN}	OE to Bn	0.5	19.8	0.5	13.5	0.3	12.5	0.5	11.7	0.5	11.8	ns
V _{CCA} = 1.65V to 1.9	5V												
	t _{PD}	An to Bn	0.5	14.9	0.5	10.0	0.5	8.7	0.3	7.3	0.3	6.9	
Propagation Delay	L _{PD}	Bn to An	0.5	13.8	0.5	9.9	0.5	8.7	0.3	7.3	0.3	7.0	ns
Disable Time	4	OE to An	0.5	14.2	0.5	14.2	0.5	14.2	0.5	14.2	0.5	14.2	
Disable Time	t _{DIS}	OE to Bn	0.5	19.4	0.5	15.2	0.5	14.2	0.5	12.6	0.5	11.6	ns
Enable Time	+	OE to An	0.5	10.4	0.5	10.4	0.5	10.4	0.5	10.4	0.5	10.4	20
Enable Time	t _{EN}	OE to Bn	0.5	18.2	0.5	12.0	0.5	10.4	0.3	9.4	0.3	9.2	ns
V _{CCA} = 2.3V to 2.7V	1												
Propagation Dolay	+	An to Bn	0.5	13.8	0.5	8.9	0.3	7.3	0.3	6.2	0.3	5.7	no
Propagation Delay	t _{PD}	Bn to An	0.5	12.5	0.3	8.4	0.3	7.3	0.3	6.2	0.3	5.6	ns
Disable Time	4	OE to An	0.5	11.2	0.5	11.2	0.5	11.2	0.5	11.2	0.5	11.2	
Disable Time	t _{DIS}	OE to Bn	0.5	18.7	0.5	13.6	0.5	12.1	0.5	11.2	0.5	10.3	ns
Enable Time	+	OE to An	0.3	7.8	0.3	7.8	0.3	7.8	0.3	7.8	0.3	7.8	no
Enable Time	t _{EN}	OE to Bn	0.5	16.9	0.5	10.5	0.3	9.2	0.3	7.8	0.3	7.5	ns
V _{CCA} = 3.0V to 3.6V	1												
Propagation Delay	+-	An to Bn	0.5	13.2	0.5	8.2	0.3	7.0	0.3	5.6	0.3	5.2	no
i Topagation Delay	t _{PD}	Bn to An	0.3	11.8	0.3	8.0	0.3	6.9	0.3	5.7	0.3	5.2	ns
Disable Time	t_	OE to An	0.5	9.4	0.5	9.4	0.5	9.4	0.5	9.4	0.5	9.4	ne
Disable Hille	t _{DIS}	OE to Bn	0.5	18.3	0.5	13.1	0.5	11.8	0.5	10.9	0.5	9.4	ns
Enable Timo	terri	OE to An	0.3	7.1	0.3	7.1	0.3	7.1	0.3	7.1	0.3	7.1	ne
Enable Time	t _{EN}	OE to Bn	0.5	16.2	0.5	9.8	0.3	8.5	0.3	7.6	0.3	7.1	ns

NOTES:

- 1. Specified by design and characterization; not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} ; t_{DIS} is the same as t_{PLZ} and t_{PHZ} ; t_{EN} is the same as t_{PZL} and t_{PZH} .

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

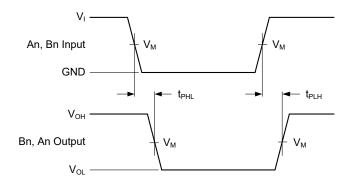
R_L = Load resistance.

 $\ensuremath{C_L}$ = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Figure 1. Test Circuit for Measuring Switching Times

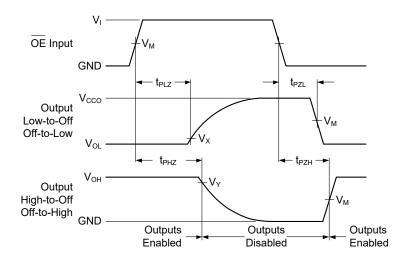

Table 1. Test Conditions

SUPPLY VOLTAGE	INF	TU	LO	AD	V _{EXT}			
V _{CCA} , V _{CCB}	V _I ⁽¹⁾	Δt/ΔV ⁽²⁾	C _L R _L		t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} (3)	
0.8V to 1.6V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}	
1.65V to 2.7V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}	
3.0V to 3.6V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}	

NOTES:

- 1. V_{CCI} is the supply voltage associated with the data input port.
- 2. dV/dt ≥ 1.0V/ns
- 3. V_{CCO} is the supply voltage associated with the output port.

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

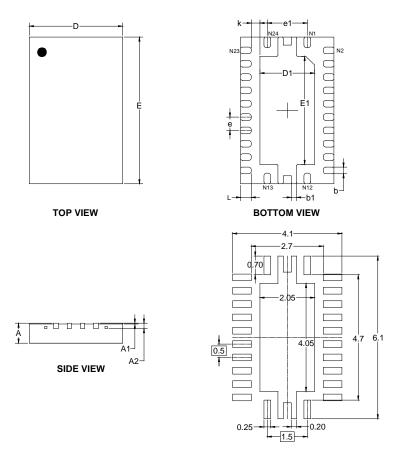
Figure 2. Input (An, Bn) to Output (Bn, An) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

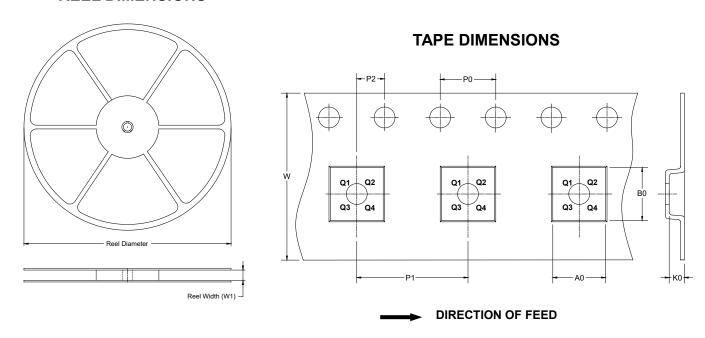

Table 2. Measurement Points

SUPPLY VOLTAGE	INPUT (1)	OUTPUT (2)				
V _{CCA} , V _{CCB}	V _M ⁽³⁾	V _M	V _X	V_{Y}		
0.8V to 1.6V	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.1V	V _{OH} - 0.1V		
1.65V to 2.7V	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.15V	V _{OH} - 0.15V		
3.0V to 3.6V	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.3V	V _{OH} - 0.3V		

NOTES

- 1. V_{CCI} is the supply voltage associated with the data input port.
- 2. $\ensuremath{V_{\text{CCO}}}$ is the supply voltage associated with the output port.
- 3. The measurement points should be V_{IH} or V_{IL} when $\Delta t/\Delta V > 1.0 ns/V$.

PACKAGE OUTLINE DIMENSIONS TQFN-5.5×3.5-24L

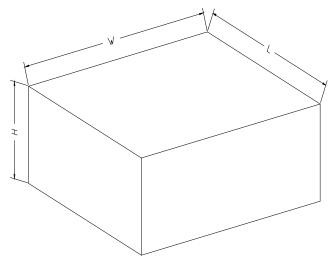

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions imeters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	.050 0.000		
A2	0.203	3 REF	0.008 REF		
D	3.400	3.600	0.134	0.142	
D1	1.950	2.150	0.077	0.085	
Е	5.400	5.600	0.213	0.220	
E1	3.950	4.150	4.150 0.156		
k	0.325	0.325 REF		REF	
b	0.200	0.300	0.008	0.012	
b1	0.150	0.250	0.006	0.010	
L	0.300	0.500	.500 0.012 0.020		
е	0.500) BSC	0.020 BSC		
e1	1.500) BSC	0.059 BSC		

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-5.5×3.5-24L	13"	12.4	3.80	5.80	1.00	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	