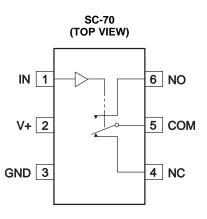
TS5A4624 1-Ω SPDT ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

FEATURES


- Isolation in Power-Down Mode, V₊ = 0
- Specified Break-Before-Make Switching
- Low ON-State Resistance (1 Ω)
- Control Inputs Are 5.5-V Tolerant
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA
 Per JESD 78, Class II
- ESD Performance Tested Per JESD
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

APPLICATIONS

- Cell Phones
- PDAs
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communication Circuits
- Modems
- Hard Drives
 - Computer Peripherals
 - Wireless Terminals and Peripherals

DESCRIPTION

The TS5A4624 is a single-pole double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature, to prevent signal distortion during the transferring of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

Switches are shown for logic 0 input.

FUNCTION TABLE

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

Configuration	2:1 Multiplexer/ Demultiplexer (1 × SPDT)
Number of channels	1
ON-state resistance r _{on})	1.1 Ω
ON-state resistance match (Δr_{on})	0.1 Ω
ON-state resistance flatness r _{on(flat)})	0.15 Ω
Turn-on/turn-off time (t _{ON/tOFF})	20 ns/15 ns
Break-before-make time (t _{BBM})	12 ns
Charge injection (Q _C)	–20 pC
Bandwidth (BW)	100 MHz
OFF isolation (O _{ISO})	–65 dB at 1 MHz
Crosstalk (X _{TALK})	-66 dB at 1 MHz
Total harmonic distortion (THD)	0.01%
Leakage current (I _{NO(OFF)} /I _{NC(OFF)})	±20 nA
Power-supply current (I ₊)	0.1 μΑ
Package options	6-pin DCK

SUMMARY OF CHARACTERISTICS⁽¹⁾

(1) $V_+ = 5 V, T_A = 25^{\circ}C$

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽²⁾
–40°C to 85°C	SOT (SC-70) – DCK	Tape and reel	TS5A4624DCKR	JW_

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at (1) I dollage ardinage, balled passing quantities, thermal data, by monital da

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

Absolute Minimum and Maximum Ratings⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V ₊	Supply voltage range ⁽³⁾		-0.5	6.5	V
V _{NO} V _{NC} V _{COM}	Analog voltage range ⁽³⁾⁽⁴⁾⁽⁵⁾		-0.5	V ₊ + 0.5	V
Ι _K	Analog port diode current	$V_{\rm NC}, V_{\rm NO}, V_{\rm COM} < 0$	-50		mA
I _{NO}	On-state switch current		-200	200	
I _{NC} I _{COM}	On-state peak switch current ⁽⁶⁾	V_{NO} , V_{NC} , $V_{COM} = 0$ to V_+	-400	400	mA
VI	Digital input voltage range ⁽³⁾⁽⁴⁾		-0.5	6.5	V
I _{IK}	Digital input clamp current	V ₁ < 0	-50		mA
I+	Continuous current through V_{+}			100	mA
I _{GND}	Continuous current through GND		-100	100	mA
θ_{JA}	Package thermal impedance ⁽⁷⁾			259	°C/W
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(5) This value is limited to 5.5 V maximum.

(6) Pulse at 1-ms duration < 10% duty cycle

(7) The package thermal impedance is calculated in accordance with JESD 51-7.

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

Electrical Characteristics for 5-V Supply⁽¹⁾

 V_{\star} = 4.5 V to 5.5 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	S	TA	V.	MIN	TYP	MAX	UNIT
Analog Switch		•		•					
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V+	V
Peak ON resistance	r _{peak}	$\begin{array}{l} 0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_{+}, \\ I_{COM} = -100 \text{ mA}, \end{array}$	Switch ON, See Figure 13	25°C Full	4.5 V		0.8	1.1 1.5	Ω
ON-state resistance	r _{on}	V_{NO} or V_{NC} = 2.5 V, I_{COM} = -100 mA,	Switch ON, See Figure 13	25°C Full	4.5 V		0.7	0.9 1.1	Ω
ON-state				25°C			0.05	0.1	
resistance match between channels	Δr_{on}	V_{NO} or V_{NC} = 2.5 V, I_{COM} = -100 mA,	Switch ON, See Figure 13	Full	4.5 V			0.1	Ω
ON-state		$\begin{array}{l} 0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_{+}, \\ I_{COM} = -100 \text{ mA}, \end{array}$	Switch ON, See Figure 13	25°C			0.15		
resistance flatness	r _{on(flat)}	V_{NO} or V_{NC} = 1 V, 1.5 V, 2.5 V, I _{COM} = -100 mA,	Switch ON, See Figure 13	25°C Full	4.5 V		0.1	0.25 0.25	Ω
		V_{NC} or $V_{NO} = 1 V$,		25°C		-20	2	20	
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}		Switch OFF, See Figure 14	Full	5.5 V	-100		100	nA
current	I _{NC(PWROFF)} ,	V_{NC} or $V_{NO} = 0$ to 5.5 V,	Switch OFF,	25°C	0.1/	-1	0.2	1	•
	I _{NO(PWROFF)}	$V_{COM} = 5.5 V \text{ to } 0,$	See Figure 14	Full	0 V	-20		20	μA
NC, NO	I _{NC(ON)} ,	V_{NC} or V_{NO} = 1 V, V_{COM} = Open,	Switch ON.	25°C		-20	2	20	
ON leakage current	I _{NO(ON)}	or V_{NC} or V_{NO} = 4.5 V, V_{COM} = Open,	See Figure 15	Full	5.5 V	-100		100	nA
COM		V_{NC} or $V_{NO} = 0$ to 5.5 V,	Switch OFF,	25°		-1	0.1	1	
OFF leakage current	I _{COM(PWROFF)}	$V_{\rm COM} = 5.5 \text{ V to } 0,$	See Figure 14	Full	0 V	-20		20	μA
COM		V_{NC} or V_{NO} = Open, V_{COM} = 1 V,	Switch ON,	25°C		-20	2	20	
ON leakage current	I _{COM(ON)}	or V_{NC} or V_{NO} = Open, V_{COM} = 4.5 V,	See Figure 15	Full	5.5 V	-100		100	nA
Digital Input (IN)									
Input logic high	V _{IH}			Full		2.4		5.5	V
Input logic low	V _{IL}			Full		0		0.8	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	5.5 V	-2 100		2 100	nA

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

Electrical Characteristics for 5-V Supply⁽¹⁾ (Continued)

 $V_{+} = 4.5$ V to 5.5 V, $T_{A} = -40^{\circ}$ C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	TA	V.	MIN	TYP	MAX	UNIT
Dynamic	-				r				
			0 05 5	25°C	5 V	4	12	22	
Turn-on time	t _{ON}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 17	Full	4.5 V to 5.5 V	2		25	ns
				25°C	5 V	1	5	8	
Turn-off time	t _{OFF}		C _L = 35 pF, See Figure 17	Full	4.5 V to 5.5 V	1		10	ns
Dreak kafara			0 05 - 5	25°C	5 V	1	8	13	
Break-before- make time	t _{BBM}		C _L = 35 pF, See Figure 18	Full	4.5 V to 5.5 V	1		15	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 22	25°C	5 V		15.5		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	5 V		18		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	5 V		55		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	5 V		55		pF
Digital input capacitance	CI	$V_{I} = V_{+}$ or GND,	See Figure 16	25°C	5 V		2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 19	25°C	5 V		90		MHz
OFF isolation	O _{ISO}	$ \begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array} $	Switch OFF, See Figure 20	25°C	5 V		-63		dB
Crosstalk	X _{TALK}	$R_{L} = 50 \ \Omega,$ f = 1 MHz,	Switch ON, See Figure 21	25°C	5 V		-63		dB
Total harmonic distortion	THD	$R_{L} = 600 \ \Omega,$ $C_{L} = 50 \ pF,$	f = 200 Hz to 20 kHz, See Figure 23	25°C	5 V		0.004		%
Supply	•			·				ľ	
Positive supply				25°C	E E V		10	50	~ ^
current	I+	$V_I = V_+$ or GND,	Switch ON or OFF	Full	5.5 V			500	nA

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

Electrical Characteristics for 3.3-V Supply⁽¹⁾

 V_{\star} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	6	TA	٧,	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V+	V
Peak ON resistance	r _{peak}	$\begin{array}{l} 0 \leq (V_{NO} \mbox{ or } V_{NC}) \leq V_{\star}, \\ I_{COM} = -100 \mbox{ mA}, \end{array}$	Switch ON, See Figure 13	25°C Full	3 V		1.3	1.6 2	Ω
ON-state resistance	r _{on}	V_{NO} or $V_{NC} = 2 V$, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 13	25°C Full	3 V		1.2	1.5 1.7	Ω
ON-state				25°C			0.1	0.15	
resistance match between channels	Δr_{on}	V_{NO} or V_{NC} = 2 V, 0.8 V, I_{COM} = -100 mA,	Switch ON, See Figure 13	Full	3 V			0.15	Ω
ON-state		$\begin{array}{l} 0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_{+}, \\ I_{COM} = -100 \text{ mA}, \end{array}$	Switch ON, See Figure 13	25°C			0.2		
resistance flatness	r _{on(flat)}	V_{NO} or $V_{NC} = 2 V$, 0.8 V, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 13	25°C Full	3 V		0.15	0.3 0.3	Ω
		V_{NC} or $V_{NO} = 1$ V, $V_{COM} = 1$ V to 3 V,	Switch OFF,	25°C		-20	2	20	
NC, NO OFF leakage	I _{NC(OFF)} , I _{NO(OFF)}	or V_{NC} or $V_{NO} = 3 V$, $V_{COM} = 1 V$ to 3 V,	See Figure 14	Full	3.6 V	-50		50	nA
current	I _{NC(PWROFF)} , I _{NO(PWROFF)}	V_{NC} or $V_{NO} = 0$ to 3.6 V, $V_{COM} = 3.6$ V to 0,	Switch OFF, See Figure 14	25°C Full	0 V	-1 -15	0.2	1 15	μA
NC, NO		V_{NC} or V_{NO} = 1 V, V_{COM} = Open,	0	25°C		-10	2	10	
ON leakage current	I _{NC(ON)} , I _{NO(ON)}	or V_{NC} or $V_{NO} = 3 V$, $V_{COM} = Open$,	Switch ON, See Figure 15	Full	3.6 V	-20		20	nA
COM		V_{NC} or $V_{NO} = 3.6$ V to 0,	Switch OFF,	25°	<u></u>	-1	0.2	1	
OFF leakage current	ICOM(PWROFF)	$V_{COM} = 0$ to 3.6 V,	See Figure 14	Full	0 V	-15		15	μA
COM		V_{NC} or V_{NO} = Open, V_{COM} = 1 V,	Switch ON,	25°C		-10	2	10	
ON leakage current	I _{COM(ON)}	or V_{NC} or V_{NO} = Open, V_{COM} = 3 V,	See Figure 15	Full	3.6 V	-20		20	nA
Digital Input (IN)									
Input logic high	V _{IH}			Full		2.4		5.5	V
Input logic low	VIL			Full		0		0.8	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	3.6 V	-2 -100		2 100	nA

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

Electrical Characteristics for 3.3-V Supply⁽¹⁾ (Continued)

 $V_{+} = 3 \text{ V}$ to 3.6 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	٧,	MIN	TYP	MAX	UNIT
Dynamic	1	1				1			1
			0 05 -5	25°C	3.3 V	4	16	25	
Turn-on time	t _{ON}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 17	Full	3 V to 3.6 V	2		27	ns
			C ₁ = 35 pF,	25°C	3.3 V	1	5.5	8	
Turn-off time	t _{OFF}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	See Figure 17	Full	3 V to 3.6 V	1		11	ns
Break-before-			C ₁ = 35 pF,	25°C	3.3 V	2	12	20	
make time	t _{BBM}		See Figure 18	Full	3 V to 3.6 V	2		25	ns
Charge injection	Q _C	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF, See Figure 22	25°C	3.3 V		9		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or V_{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	3.3 V		18		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	3.3 V		55		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 16	25°C	3.3 V		55		pF
Digital input capacitance	CI	$V_{I} = V_{+}$ or GND,	See Figure 16	25°C	3.3 V		2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 19	25°C	3.3 V		90		MHz
OFF isolation	O _{ISO}		Switch OFF, See Figure 20	25°C	3.3 V		-63		dB
Crosstalk	X _{TALK}	$R_{L} = 50 \ \Omega,$ f = 1 MHz,	Switch ON, See Figure 21	25°C	3.3 V		-63		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 23	25°C	3.3 V		0.01		%
Supply	1					Į.			
Positive supply	1	$V_1 = V_+$ or GND,	Switch ON or OFF	25°C	3.6 V		10	50	nA
current	I+	$v_1 = v_+$ or Give,	Switch ON OFF	Full	3.0 V			100	IIA

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

Electrical Characteristics for 2.5-V Supply⁽¹⁾

 V_{\star} = 2.3 V to 2.7, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	;	TA	٧,	MIN	TYP	MAX	UNIT
Analog Switch	L	-							1
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V+	V
Peak ON resistance	r _{peak}	$\begin{array}{l} 0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_{+}, \\ I_{COM} = -8 \text{ mA}, \end{array}$	Switch ON, See Figure 13	25°C Full	2.3 V		1.8	2.5 2.7	Ω
ON-state resistance	r _{on}	V_{NO} or V_{NC} = 1.8 V, I_{COM} = -8 mA,	Switch ON, See Figure 13	25°C Full	2.3 V		1.5	2 2.4	Ω
ON-state				25°C			0.15	0.2	
resistance match between channels	Δr_{on}	$V_{NO} \text{ or } V_{NC} = 1.8 \text{ V},$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 13	Full	2.3 V			0.2	Ω
ON-state		$\begin{array}{l} 0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_{+}, \\ I_{COM} = -8 \text{ mA}, \end{array}$	Switch ON, See Figure 13	25°C			0.6		
resistance flatness	r _{on(flat)}	V_{NO} or V_{NC} = 0.8 V, 1.8 V, I_{COM} = -8 mA,	Switch ON, See Figure 13	25°C Full	2.3 V		0.6	1 1	Ω
		V_{NC} or $V_{NO} = 0.5 V$,		25°C		-20	2	20	
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}		Switch OFF, See Figure 14	Full	2.7 V	-50		50	nA
ourion	I _{NC(PWROFF)} , I _{NO(PWROFF)}	V_{NC} or $V_{NO} = 0$ to 3.6 V, $V_{COM} = 3.6$ V to 0,	Switch OFF, See Figure 14	25°C Full	0 V	-1 -10	0.1	1 10	μA
NC, NO		V_{NC} or $V_{NO} = 0.5 \text{ V}$, $V_{COM} = \text{Open}$,		25°C		-10	2	10	
ON leakage current	I _{NC(ON)} , I _{NO(ON)}	or V_{NC} or $V_{NO} = 2.2 \text{ V}$, $V_{COM} = Open$,	Switch ON, See Figure 15	Full	2.7 V	-20		20	nA
COM		V_{NC} or $V_{NO} = 2.7$ V to 0,	Switch OFF,	25°	0.14	-1	0.1	10	
OFF leakage current	COM(PWROFF)	$V_{COM} = 0$ to 2.7 V,	See Figure 14	Full	0 V	-10		10	μA
COM		V_{NC} or V_{NO} = Open, V_{COM} = 0.5 V,	Switch ON,	25°C		-10	2	10	
ON leakage current	I _{COM(ON)}	or V_{NC} or V_{NO} = Open, V_{COM} = 2.2 V,	See Figure 15	Full	2.7 V	-20		20	nA
Digital Input (IN)									
Input logic high	V _{IH}			Full		1.8		5.5	V
Input logic low	VIL			Full		0		0.6	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	2.7 V	-2 20		2 20	nA

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

Electrical Characteristics for 2.5-V Supply⁽¹⁾ (Continued)

 $V_{+} = 2.3 \text{ V}$ to 2.7, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

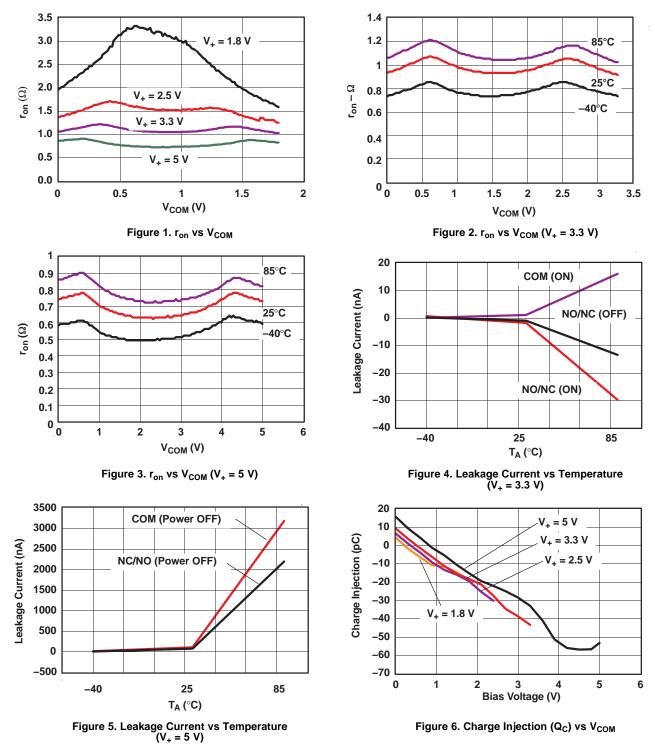
PARAMETER	SYMBOL	TEST CONI	DITIONS	TA	٧,	MIN	TYP	MAX	UNIT
Dynamic	ł								
			0 05 - 5	25°C	2.5 V	10	22	32	
Turn-on time	t _{ON}		C _L = 35 pF, See Figure 17	Full	2.3 V to 2.7 V	8		35	ns
			C = 25 pF	25°C	2.5 V	3	6	11	
Turn-off time	t _{OFF}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 17	Full	2.3 V to 2.7 V	2		12	ns
Break-before-			$C_1 = 35 \text{ pF},$	25°C	2.5 V	5	19	30	
make time	t _{BBM}		See Figure 18	Full	2.3 V to 2.7 V	5		35	ns
Charge injection	Q _C	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF, See Figure 22	25°C	2.5 V		-7		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or V_{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		18		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	2.5 V		55		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	2.5 V		55		pF
Digital input capacitance	CI	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	2.5 V		2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 19	25°C	2.5 V		90		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 20	25°C	2.5 V		-63		dB
Crosstalk	X _{TALK}		Switch ON, See Figure 21	25°C	2.5 V		-63		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 23	25°C	2.5 V		0.02		%
Supply									
Positive supply current	I+	$V_{I} = V_{+}$ or GND,	Switch ON or OFF	25°C Full	2.7 V		10	20 150	nA

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

Electrical Characteristics for 1.8-V Supply⁽¹⁾

 V_{\star} = 1.65 V to 1.95 V, T_{A} = $-40^{\circ}C$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	V.	MIN	TYP	MAX	UNIT
Analog Switch	1								
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V ₊	V
Peak ON resistance	r _{peak}	$\begin{array}{l} 0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_{+}, \\ I_{COM} = -2 \text{ mA}, \end{array}$	Switch ON, See Figure 13	25°C Full	1.65 V		5	15	Ω
ON-state resistance	r _{on}	V_{NO} or V_{NC} = 1.5 V, I_{COM} = -2 mA,	Switch ON, See Figure 13	25°C Full	1.65 V		2	2.5 3.5	Ω
ON-state				25°C			0.15	0.4	
resistance match between channels	Δr_{on}	$\label{eq:VNO} \begin{array}{l} V_{NO} \text{ or } V_{NC} = 1.5 \text{ V}, \\ I_{COM} = -2 \text{ mA}, \end{array}$	Switch ON, See Figure 13	Full	1.65 V			0.4	Ω
ON-state		$\begin{array}{l} 0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_{+}, \\ I_{COM} = -8 \text{ mA}, \end{array}$	Switch ON, See Figure 13	25°C			5		
resistance flatness	r _{on(flat)}	$V_{NO} \text{ or } V_{NC} = 0.6 \text{ V}, 1.5 \text{ V},$	Switch ON,	25°C	1.65 V		4.5		Ω
naticss		$I_{COM} = -2 \text{ mA},$	See Figure 13	Full					
		V_{NC} or $V_{NO} = 0.3 V$,		25°C		-5	2	5	
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}		Switch OFF, See Figure 14	Full	1.95 V	-20		20	nA
00110111	I _{NC(PWROFF)} ,	V_{NC} or $V_{NO} = 0$ to 1.95 V,	Switch OFF,	25°C	0 V	-1	0.1	1	
	I _{NO(PWROFF)}	$V_{COM} = 1.95 V \text{ to } 0,$	See Figure 14	Full	00	-5		5	μA
		V_{NC} or $V_{NO} = 0.3 V$,		25°C		-5	2	5	
NC, NO ON leakage current	I _{NC(ON)} , I _{NO(ON)}	$\label{eq:VCOM} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NC} \mbox{ or } V_{NO} = 1.65 \mbox{ V}, \\ V_{COM} = Open, \end{array}$	Switch ON, See Figure 15	Full	1.95 V	-20		20	nA
COM		V_{NC} or V_{NO} = 1.95 V to 0,	Switch OFF,	25°		-1	0.1	1	
OFF leakage current	I _{COM(PWROFF)}	$V_{COM} = 0$ to 1.95 V,	See Figure 14	Full	0 V	-5		5	μA
		V _{NC} or V _{NO} = Open,		25°C		-5	2	5	
COM ON leakage current	I _{COM(ON)}	$\begin{array}{l} V_{COM}=0.3 \ V, \\ or \\ V_{NC} \ or \ V_{NO}=Open, \\ V_{COM}=1.65 \ V, \end{array}$	Switch ON, See Figure 15	Full	1.95 V	-20		20	nA
Digital Input (IN))	·			• •				
Input logic high	V _{IH}			Full		1.5		5.5	V
Input logic low	VIL			Full		0		0.6	V
Input leakage		V = 55 V or 0		25°C	1.95 V	-2		2	nA
current	I _{IH} , I _{IL}	$V_{I} = 5.5 V \text{ or } 0$		Full	1.90 V	20		20	IA


SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

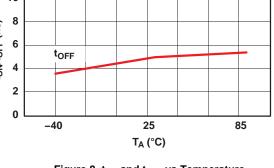
Electrical Characteristics for 1.8-V Supply⁽¹⁾ (Continued)

 V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	۷,	MIN	TYP	MAX	UNIT
Dynamic									
		., .,	0 05 5	25°C	1.8 V	17	35	65	
Turn-on time	t _{ON}		C _L = 35 pF, See Figure 17	Full	1.65 V to 1.95 V	15		70	ns
			C ₁ = 35 pF,	25°C	1.8 V	3	7	13	
Turn-off time	t _{OFF}		See Figure 17	Full	1.65 V to 1.95 V	2		15	ns
Break-before-			C _L = 35 pF,	25°C	1.8 V	15	33	60	
make time	t _{BBM}		See Figure 18	Full	1.65 V to 1.95 V	15		65	ns
Charge injection	Q _C	$V_{GEN} = 0,$ R _{GEN} = 0,	C _L = 1 nF, See Figure 22	25°C	1.8 V		4		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	1.8 V		18		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	1.8 V		55		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+$ or GND, Switch ON,	See Figure 16	25°C	1.8 V		55		pF
Digital input capacitance	Cl	$V_{I} = V_{+}$ or GND,	See Figure 16	25°C	1.8 V		2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 19	25°C	1.8 V		90		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 20	25°C	1.8 V		63		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, See Figure 21	25°C	1.8 V		63		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 23	25°C	1.8 V		0.05		%
Supply				·					
Positive supply	1	V = V or CND	Switch ON or OFF	25°C	1.95 V		5	15	
current	I+	$V_{I} = V_{+}$ or GND,	Switch ON OFF	Full	1.90 V			50	μA

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

TYPICAL PERFORMANCE


TS5A4624 **1-\Omega SPDT ANALOG SWITCH** 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

45 14 40 ton 12 t_{ON} 35 10 ton/toff (ns) 30 8 25 ton/toff (ns) 20 6 toff 15 4 10 tOFF 2 5 0 0 -40 25 85 0 1 2 3 4 5 6 T_A (°C) V₊ (V) Figure 7. t_{ON} and t_{OFF} vs Supply Voltage Figure 8. t_{ON} and t_{OFF} vs Temperature 2.5 0 Logic Level Threshold (nA) -2 2.0 V_{IN} Rising -4 Gain (dB) 1.5 -6 V_{IN} Falling -8 1.0 -10 0.5 -12 0.0 -14 1 2 4 5 0 3 6 1000 0.1 1 100 10 V₊ (V) Frequency (MHz) Figure 9. V_{IN} and t_{OFF} vs Supply Voltage Figure 10. Bandwidth (V₊ = 5 V) 0.01 0 0.009 -10 Ш 0.008 -20 0.007 -30 Attenuation (dB) THD + (%) 0.006 -40 0.005 -50 0.004 -60 0.003 -70 0.002 -80 0.001 -90 0 1K 10K 10 100 100K 0.1 10 1 100 1000 Frequency (kHz) Frequency (MHz)

Figure 11. OFF Isolation vs Frequency

TYPICAL PERFORMANCE (continued)

Figure 12. Total Harmonic Distortion vs Frequency $(V_{+} = 5 V)$

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

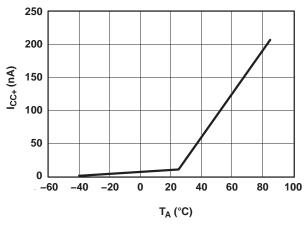


Figure 13. Current vs Temperature (V₊ = 5 V)

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

PIN NO.	NAME	DESCRIPTION
1	IN	Digital control to connect COM to NO
2	V ₊	Power supply
3	GND	Digital ground
4	NC	Normally closed
5	COM	Common
6	NO	Normally open

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION							
V _{COM}	Voltage at COM							
V _{NC}	Voltage at NC							
V _{NO}	Voltage at NO							
r _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON							
r _{peak}	Peak ON-state resistance over a specified voltage range							
Δr_{on}	Difference of ron between channels							
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions							
I _{NC(OFF)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions							
I _{NC(PWROFF)}	Leakage current measured at the NC port during the power-down condition, $V_{+} = 0$							
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions							
I _{NO(PWROFF)}	Leakage current measured at the NO port during the power-down condition, $V_{+} = 0$							
I _{NC(ON)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) being open							
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) being open							
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) being open							
ICOM(PWROFF)	Leakage current measured at the COM port during the power-down condition, $V_{+} = 0$							
V _{IH}	Minimum input voltage for logic high for the control input (IN)							
V _{IL}	Maximum input voltage for logic low for the control input (IN)							
VI	Voltage at IN							
I _{IH} , I _{IL}	Leakage current measured at IN							
t _{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM, NC, or NO) signal when the switch is turning ON.							
t _{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM, NC, or NO) signal when the switch is turning OFF.							
t _{BBM}	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.							
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_O$, C_L is the load capacitance and ΔVO is the change in analog output voltage.							
C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF							
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF							
C _{NC(ON)}	Capacitance at the NC port when the corresponding channel (NC to COM) is ON							
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON							
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON							
C _{IN}	Capacitance of IN							
OISO	OFF isolation of the switch is a measurement OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state.							
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB.							
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.							
	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio or							
THD	root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.							

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

PARAMETER MEASUREMENT INFORMATION

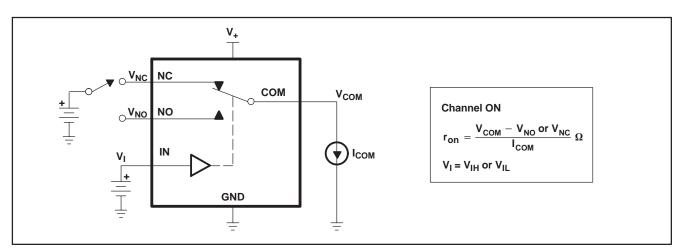
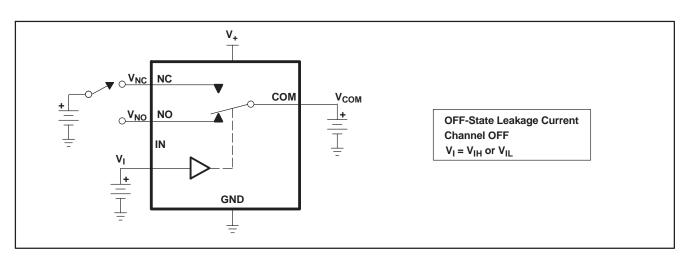
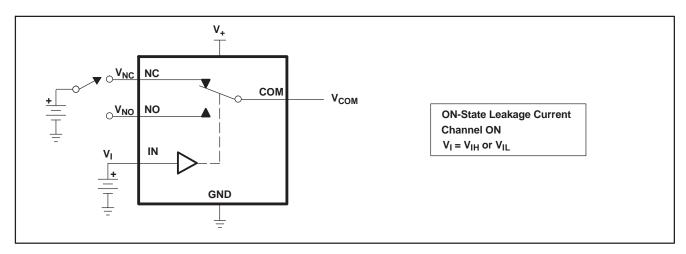




Figure 14. ON-State Resistance (ron)

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

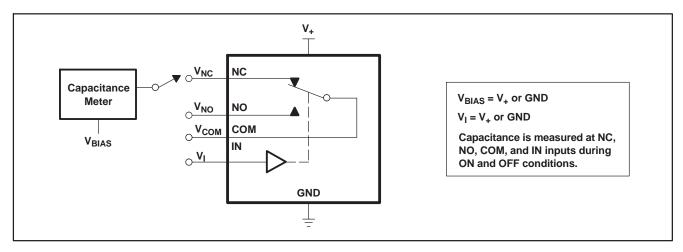
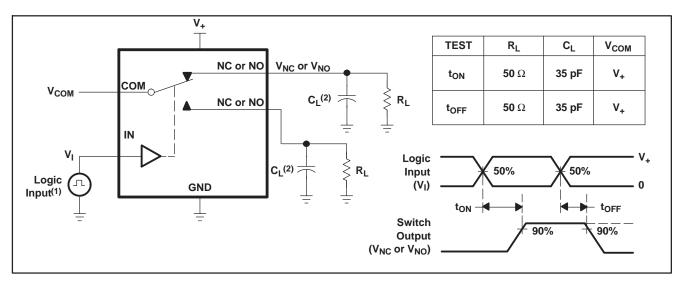
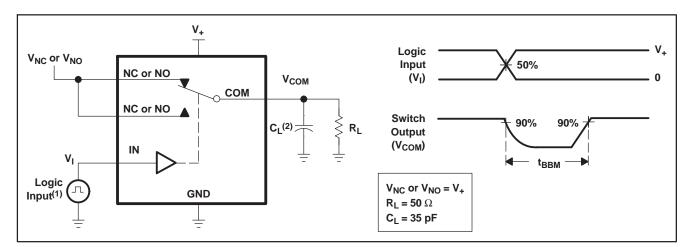
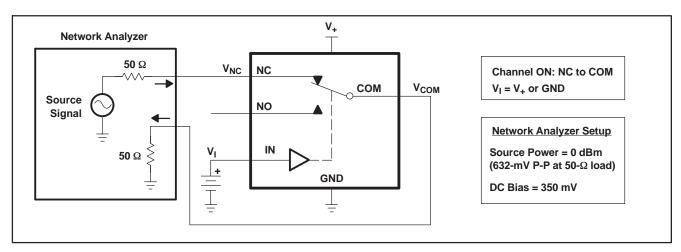



Figure 17. Capacitance (C₁, C_{COM(ON)}, C_{NC(OFF)}, C_{NO(OFF)}, C_{NC(ON)}, C_{NO(ON)})

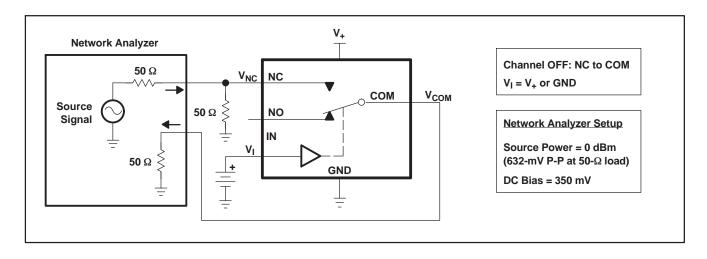


(1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.

(2) C_L includes probe and jig capacitance.


Figure 18. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006



- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.

Figure 19. Break-Before-Make Time (t_{BBM})

Figure 20. Bandwidth (BW)

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

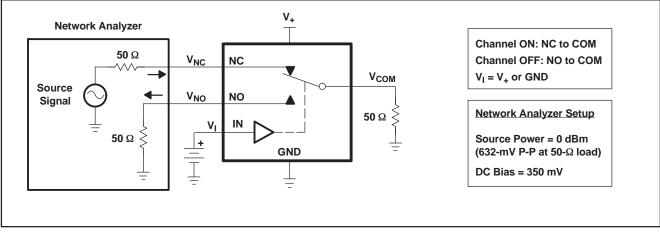
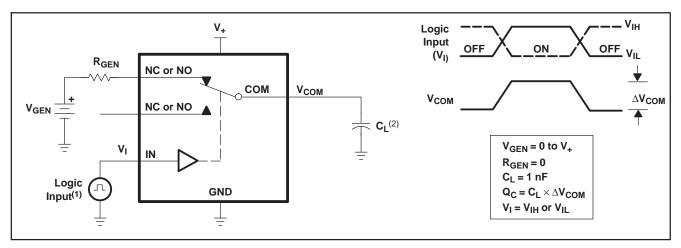
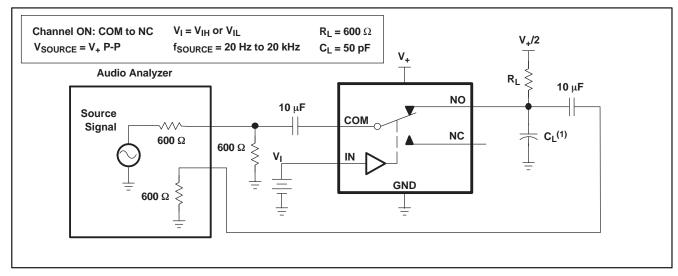



Figure 22. Crosstalk (X_{TALK})



(1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.

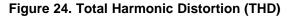

(2) C_L includes probe and jig capacitance.

Figure 23. Charge Injection (Q_c)

SLYS014A-DECEMBER 2005-REVISED AUGUST 2006

(1) C_L includes probe and jig capacitance.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	. ,					.,	(6)	.,			
TS5A4624DCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JWF, JWR)	Samples
TS5A4624DCKT	ACTIVE	SC70	DCK	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	JWR	Samples
TS5A4624DCKTG4	ACTIVE	SC70	DCK	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	JWR	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

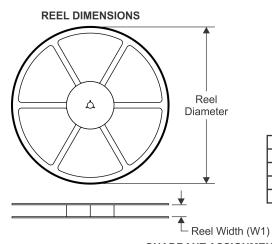
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

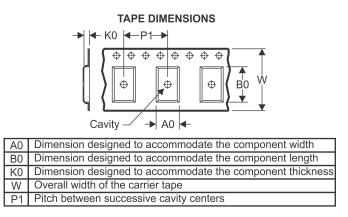
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com

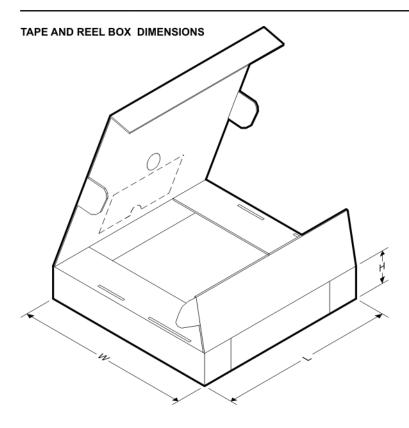

PACKAGE OPTION ADDENDUM


10-Dec-2020

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

24-Apr-2020

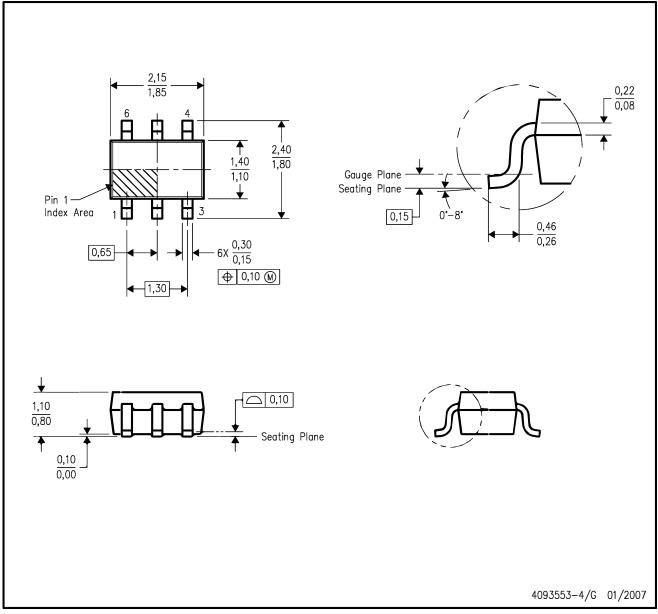
TAPE AND REEL INFORMATION


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nomina												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A4624DCKR	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TS5A4624DCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TS5A4624DCKT	SC70	DCK	6	250	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3

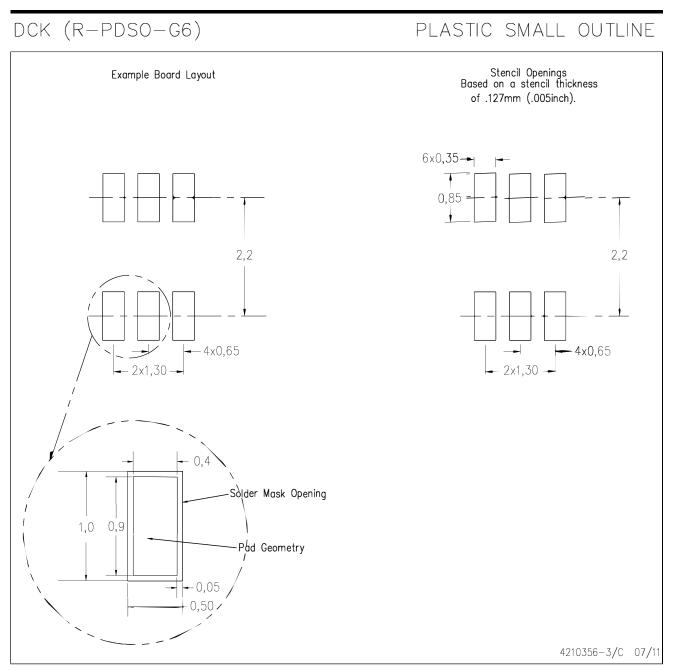
PACKAGE MATERIALS INFORMATION

24-Apr-2020



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A4624DCKR	SC70	DCK	6	3000	202.0	201.0	28.0
TS5A4624DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
TS5A4624DCKT	SC70	DCK	6	250	202.0	201.0	28.0


DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.