0.03-µV/°C Drift, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift OPERATIONAL AMPLIFIERS

Check for Samples: OPA188, OPA2188, OPA4188

FEATURES

- Low Offset Voltage: 25 µV (max)
- Zero-Drift: 0.03 µV/°C
- Low Noise: 8.8 nV/√Hz
 0.1-Hz to 10-Hz Noise: 0.25 μV_{PP}
- Excellent DC Precision: PSRR: 142 dB CMRR: 146 dB Open-Loop Gain: 136 dB
- Gain Bandwidth: 2 MHz
- Quiescent Current: 475 µA (max)
- Wide Supply Range: ±2 V to ±18 V
- Rail-to-Rail Output: Input Includes Negative Rail
- RFI Filtered Inputs
- MicroSIZE Packages

APPLICATIONS

- Bridge Amplifiers
- Strain Gauges
- Test Equipment
- Transducer Applications
- Temperature Measurement
- Electronic Scales
- Medical Instrumentation
- Resister Thermal Detectors
- Precision Active Filters

DESCRIPTION

The OPAx188 series operational amplifiers use TI proprietary auto-zeroing techniques to provide low offset voltage (25 μ V, max), and near zero-drift over time and temperature. These miniature, high-precision, low quiescent current amplifiers offer high input impedance and rail-to-rail output swing within 15 mV of the rails. The input common-mode range includes the negative rail. Either single or dual supplies can be used in the range of +4.0 V to +36 V (±2 V to ±18 V).

The single version is available in the *Micro*SIZE SOT23-5, MSOP-8, and SO-8 packages; the dual is offered in MSOP-8 and SO-8 packages; the quad is offered in SO-14 and TSSOP-14 packages. All versions are specified for operation from -40° C to $+105^{\circ}$ C.

Zero-Drift Amplifier Portfolio

VERSION	PRODUCT	OFFSET VOLTAGE (µV)	OFFSET VOLTAGE DRIFT (μV/°C)	BANDWIDTH (MHz)
Single	OPA188 (4 V to 36 V)	25	0.085	2
	OPA333 (5 V)	10	0.05	0.35
Single	OPA378 (5 V)	50	0.25	0.9
	OPA735 (12 V)	5	0.05	1.6
	OPA2188 (4 V to 36 V)	25	0.085	2
Dust	OPA2333 (5 V)	10	0.05	0.35
Duai	OPA2378 (5 V)	50	0.25	0.9
	OPA2735 (12 V)	5	0.05	1.6
Quad	OPA4188 (4 V to 36 V)	25	0.085	2
Quad	OPA4330 (5 V)	50	0.25	0.35

OPA188 OPA2188 OPA4188

SBOS525-AUGUST 2011

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRODUCT	PACKAGE- LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
SINGLE						
	SOT22 5		10°C to 1105°C	трр	OPA188AIDBVT	Tape and Reel, 250
	30123-5	DBV	-40 C 10 +105 C	IBD	OPA188AIDBVR	Tape and Reel, 3000
ODA 199(2)	<u> </u>	D	10°C to 1105°C		OPA188AID	Rails, 100
UFA100 /	30-0	U	-40 C 10 +105 C	OFATOOA	OPA188AIDR	Tape and Reel, 2500
		DCK	40°C to 1105°C	TDD	OPA188AIDGKT	Tape and Reel, 250
	MSOP-6	DGK	-40 C 10 +105 C	ТЫ	OPA188AIDGKR	Tape and Reel, 2500
DUAL						
	SO-8	-8 D	40°C to 1105°C	2199	OPA2188AID	Rails, 100
OPA2199			-40 C 10 +103 C	2100	OPA2188AIDR	Tape and Reel, 2500
OF A2 100		DCK	10°C to 1105°C	2100	OPA2188AIDGKT	Tape and Reel, 250
	10150F-0	DGK	-40 C t0 +105 C	2100	OPA2188AIDGKR	Tape and Reel, 2500
QUAD						
ODA 4400 ⁽²⁾	60.44	NO 44	40°C to 1105°C		OPA4188AID	Rails, 90
	30-14	U	-40 C 10 +103 C	OF A4100A	OPA4188AIDR	Tape and Reel, 2000
UFA4100\/	TECOD 14		40°C to 1105°C	00441994	OPA4188AIPW	Rails, 90
	13305-14	ΓVV	-40 C 10 +103 C	0FA4100A	OPA4188AIPWR	Tape and Reel, 2000

PACKAGE INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

(2) Product preview device.

ABSOLUTE MAXIMUM RATINGS

		OPAx188	UNIT
Supply voltage		±20, 40 (single supply)	V
	Voltage	(V–) – 0.5 to (V+) + 0.5	V
Signal input terminals	Current ⁽¹⁾	±10	mA
Output short-circuit ⁽²⁾		Continuous	
Operating temperature		–55 to +125	°C
Storage temperature		-65 to +150	°C
Junction temperature		+150	°C
ESD ratings	Human body model (HBM)	1.5	kV
	Charged device model (CDM)	1	kV

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Short-circuit to ground, one amplifier per package.

ELECTRICAL CHARACTERISTICS: High-Voltage Operation

 $V_{s} = \pm 4 \text{ V to } \pm 18 \text{ V (V}_{s} = +8 \text{ V to } +36 \text{ V)}$ Boldface limits apply over the specified temperature range, $T_{A} = -40^{\circ}\text{C}$ to $+105^{\circ}\text{C}$.

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to $V_S/2$, and $V_{COM} = V_{OUT} = V_S/2$, unless otherwise noted.

			OPA188, OPA2188, OPA4188		
	PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT
OFFSET VO	LTAGE				
V _{OS}	Input offset voltage		6	25	μV
dV _{OS} /dT	vs Temperature		0.03	0.085	μ V/°C
	vs power supply	$V_{\rm S}$ = 4 V to 36 V, $V_{\rm CM}$ = $V_{\rm S}/2$	0.075	0.3	μV/V
PORK	vs temperature	$V_{S} = 4 V \text{ to } 36 V, V_{CM} = V_{S}/2$		0.3	μ V/V
	Long-term stability		See note ⁽¹⁾		μV
	Channel separation, dc		1		μV/V
INPUT BIAS	CURRENT	•			
	Input bias current	$V_{CM} = V_S/2$	±160	±850	рА
IB	over temperature	–40°C to +105°C		±4	nA
	Input offset current		±320	±1700	рА
IOS	over temperature	–40°C to +105°C		±2	nA
NOISE					
e _n	Input voltage noise, f = 0.1 Hz to 10 Hz		0.25		μV _{PP}
e _n	Input voltage noise density, f = 1 kHz		8.8		nV/Hz
i _n	Input current noise density, f = 1 kHz		7		fA/Hz
INPUT VOLT	AGE RANGE				
V _{CM}	Common-mode voltage range		V-	(V+) – 1.5	V
		$(V-) < V_{CM} < (V+) - 1.5 V$	120 134		dB
CMRR	Common-mode rejection ratio	$(V-) + 0.5 V < V_{CM} < (V+) - 1.5 V,$ $V_{S} = \pm 18 V$	130 146		dB
	over temperature	(V–) + 0.5 V < V _{CM} < (V+) – 1.5 V, V _S = ±18 V	120 126		dB
INPUT IMPE	DANCE				
	Differential		100/6		MΩ/pF
	Common-mode		6/9.5		10 ¹² Ω/pF
OPEN-LOOP	' GAIN				
	Open-loop voltage gain	$(V-) + 500 \text{ mV} < V_O < (V+) - 500 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	130 136		dB
AOL	Open-loop voltage gain	(V–) + 500 mV < V ₀ < (V+) – 500 mV, R _L = 10 k Ω	120 126		dB
FREQUENC	YRESPONSE				
GBW	Gain-bandwidth product		2		MHz
SR	Slew rate	G = +1	0.8		V/µs
	Settling time, 0.1%	$V_{S} = \pm 18 V, G = 1, 10-V step$	20		μs
	Settling time, 0.01%	$V_{S} = \pm 18 V, G = 1, 10-V step$	27		μs
	Overload recovery time	$V_{IN} \times G = V_S$	1		μs
THD+N	Total harmonic distortion + noise	1 kHz, G = 1, V _{OUT} = 1 Vrms	0.0001		%

(1) 1000-hour life test at +125°C demonstrated randomly distributed variation in the range of measurement limits—approximately 4 µV.

OPA188 OPA2188 **OPA4188** SBOS525-AUGUST 2011

ELECTRICAL CHARACTERISTICS: High-Voltage Operation (continued)

PARAMETER			OPA188, OPA21	OPA188, OPA2188, OPA4188		
		CONDITIONS	MIN	TYP MAX	UNIT	
OUTPUT			· · ·			
	Voltage output owing from roll	No load		6 15	mV	
Voltage output swing from rail		$R_L = 10 \ k\Omega$		220 250	mV	
	Voltage output swing from rail	R _L = 10 kΩ		310 350	mV	
I _{SC}	Short-circuit current			±18	mA	
Ro	Open-loop output resistance	$f = 1 MHz$, $I_O = 0$		120	Ω	
C _{LOAD}	Capacitive load drive			1	nF	
POWER S	SUPPLY					
Vs	Operating voltage range		4 to 36 (±2 to :	±18)	V	
	Quiescent current (per amplifier)	$V_{S} = \pm 4 \text{ V to } V_{S} = \pm 18 \text{ V}$		415 475	μA	
IQ	over temperature	I _O = 0 mA		525	μΑ	
TEMPERA	ATURE RANGE		· · ·			
	Specified range		-40	+105	°C	
	Operating range		-40	+125	°C	
	Storage range		-65	+150	°C	

ELECTRICAL CHARACTERISTICS: Low-Voltage Operation

 $V_s = \pm 2 V$ to $< \pm 4 V$ ($V_s = +4 V$ to < +8 V) Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}$ C to $+105^{\circ}$ C.

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to $V_S/2$, and $V_{COM} = V_{OUT} = V_S/2$, unless otherwise noted.

		OPA188, OPA2188, OPA4188			
	PARAMETER	CONDITIONS	MIN	TYP MAX	UNIT
OFFSET VO	LTAGE				
V _{OS}	Input offset voltage			6 25	μV
dV _{OS} /dT	vs temperature			0.03 0.085	μ V/°C
	vs power supply	$V_{\rm S}$ = 4 V to 36 V, $V_{\rm CM}$ = $V_{\rm S}/2$	0	.075 0.3	μV/V
FORK	vs temperature	V_{S} = 4 V to 36 V, V_{CM} = $V_{S}/2$		0.3	μ V/V
	Long-term stability		See No	te ⁽¹⁾	μV
	Channel separation, dc			1	μV/V
INPUT BIAS	CURRENT				
	Input bias current	$V_{CM} = V_S/2$	E	±850	pА
IB	over temperature	–40°C to +105°C		±4	nA
	Input offset current		E	±1700	pА
IOS	over temperature	–40°C to +105°C		±2	nA
NOISE					
e _n	Input voltage noise, f = 0.1 Hz to 10 Hz			0.25	μV _{PP}
	Input voltage noise density, f = 1 kHz			8.8	nV/Hz
i _n	Input current noise density, f = 1 kHz			7	fA/Hz
INPUT VOLT	AGE RANGE				
V _{CM}	Common-mode voltage range		V–	(V+) – 1.5	v
		$(V-) < V_{CM} < (V+) - 1.5 V$	106	114	dB
CMRR	Common-mode rejection ratio	$(V-) + 0.5 V < V_{CM} < (V+) - 1.5 V,$ $V_{S} = \pm 2 V$	114	120	dB
	over temperature	(V–) + 0.5 V < V _{CM} < (V+) – 1.5 V, V _S = ± 2 V	110	120	dB
INPUT IMPE	DANCE				
	Differential		1	00/6	MΩ/pF
	Common-mode			6/95	10 ¹² Ω/pF
OPEN-LOOF	9 GAIN				I
		$\begin{array}{l} (V-) + 500 \mbox{ mV} < V_{O} < (V+) - 500 \mbox{ mV}, \\ R_{L} = 5 k\Omega, V_{S} = 5 \mbox{ V} \end{array}$	110	120	dB
A _{OL}	Open-loop voltage gain	$(V-) + 500 \text{ mV} < V_O < (V+) - 500 \text{ mV}, R_L = 10 \text{ k}\Omega$	120	130	dB
	Open-loop voltage gain	(V–) + 500 mV < V ₀ < (V+) – 500 mV, R _L = 10 k Ω	114	120	dB
FREQUENC	YRESPONSE				
GBW	Gain-bandwidth product			2	MHz
SR	Slew rate	G = +1		0.8	V/µs
	Overload recovery time	$V_{IN} \times G = V_S$		1	μs
THD+N	Total harmonic distortion + noise	1 kHz, G = 1, V _{OUT} = 1 Vrms	0.0	0001	%

(1) 1000-hour life test at +125°C demonstrated randomly distributed variation in the range of measurement limits—approximately 4 µV.

OPA188 OPA2188 OPA4188

SBOS525-AUGUST 2011

ELECTRICAL CHARACTERISTICS: Low-Voltage Operation (continued)

 $V_{S} = \pm 2 V \text{ to } < \pm 4 V \text{ (}V_{S} = +4 V \text{ to } < +8 V\text{)} \\ \textbf{Boldface limits apply over the specified temperature range, } T_{A} = -40^{\circ}\text{C to } +105^{\circ}\text{C}.$

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to $V_S/2$, and $V_{COM} = V_{OUT} = V_S/2$, unless otherwise noted.

			OPA188, OPA218	OPA188, OPA2188, OPA4188		
PARAMETER		CONDITIONS	MIN 1	YP MAX	UNIT	
OUTPUT						
	Voltage output owing from roll	No load		6 15	mV	
Voltage output swing from rail		$R_L = 10 \ k\Omega$		220 250	mV	
	Voltage output swing from rail	R _L = 10 kΩ		310 350	mV	
I _{SC}	Short-circuit current			±18	mA	
Ro	Open-loop output resistance	$f = 1 MHz$, $I_O = 0$		120	Ω	
C _{LOAD}	Capacitive load drive			1	nF	
POWER S	UPPLY					
Vs	Operating voltage range		4 to 36 (±2 to ±	:18)	V	
	Quiescent current (per amplifier)	$V_{S} = \pm 2 V$ to $V_{S} = \pm 4 V$		385 440	μA	
IQ	over temperature	I ₀ = 0 mA		525	μΑ	
TEMPERA	TURE RANGE					
	Specified range		-40	+105	°C	
	Operating range		-40	+125	°C	
	Storage range		-65	+150	°C	

THERMAL INFORMATION: OPA2188

		OPA2188ID	OPA2188IDGK	
	THERMAL METRIC ⁽¹⁾	D	DGK	UNITS
		8 PINS	8 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	111.0	159.3	
θ_{JCtop}	Junction-to-case (top) thermal resistance	54.9	37.4	
θ_{JB}	Junction-to-board thermal resistance	51.7	48.5	°C 1.1/
Ψ_{JT}	Junction-to-top characterization parameter	9.3	1.2	C/W
Ψ_{JB}	Junction-to-board characterization parameter	51.1	77.1	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	n/a	n/a	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

PIN CONFIGURATIONS

(1) NC = no connection.

OPA4188 D, PW PACKAGES (SO-14, TSSOP-14) (TOP VIEW)

TYPICAL CHARACTERISTICS

Table 1. Characteristic Performance Measurements

DESCRIPTION	FIGURE
Offset Voltage Production Distribution	Figure 1
Offset Voltage Drift Distribution	Figure 2
Offset Voltage vs Temperature	Figure 3
Offset Voltage vs Common-Mode Voltage	Figure 4, Figure 5
Offset Voltage vs Power Supply	Figure 6
I _B and I _{OS} vs Common-Mode Voltage	Figure 7
Input Bias Current vs Temperature	Figure 8
Output Voltage Swing vs Output Current (Maximum Supply)	Figure 9
CMRR and PSRR vs Frequency (Referred-to-Input)	Figure 10
CMRR vs Temperature	Figure 11, Figure 12
PSRR vs Temperature	Figure 13
0.1-Hz to 10-Hz Noise	Figure 14
Input Voltage Noise Spectral Density vs Frequency	Figure 15
THD+N Ratio vs Frequency	Figure 16
THD+N vs Output Amplitude	Figure 17
Quiescent Current vs Supply Voltage	Figure 18
Quiescent Current vs Temperature	Figure 19
Open-Loop Gain and Phase vs Frequency	Figure 20
Closed-Loop Gain vs Frequency	Figure 21
Open-Loop Gain vs Temperature	Figure 22
Open-Loop Output Impedance vs Frequency	Figure 23
Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)	Figure 24, Figure 25
No Phase Reversal	Figure 26
Positive Overload Recovery	Figure 27
Negative Overload Recovery	Figure 28
Small-Signal Step Response (100 mV)	Figure 29, Figure 30
Large-Signal Step Response	Figure 31, Figure 32
Large-Signal Settling Time (10-V Positive Step)	Figure 33
Large-Signal Settling Time (10-V Negative Step)	Figure 34
Short-Circuit Current vs Temperature	Figure 35
Maximum Output Voltage vs Frequency	Figure 36
Channel Separation vs Frequency	Figure 37
EMIRR IN+ vs Frequency	Figure 38

OPA188 OPA2188 OPA4188 SBOS525-AUGUST 2011

TYPICAL CHARACTERISTICS $V_S = \pm 18$ V, $V_{CM} = V_S/2$, $R_{LOAD} = 10$ k Ω connected to $V_S/2$, and $C_L = 100$ pF, unless otherwise noted. OFFSET VOLTAGE PRODUCTION DISTRIBUTION 20 40 Distribution Taken From 1400 Amplifiers 18 35 Percentage of Amplifiers (%) 16 Percentage of Amplifiers (%) 30 14 25 12 10 20 8 15 6 10 4 5 2 0 0 0.01 Offset Voltage (µV) Figure 1.

OFFSET VOLTAGE vs COMMON-MODE VOLTAGE

OFFSET VOLTAGE DRIFT DISTRIBUTION

OFFSET VOLTAGE vs COMMON-MODE VOLTAGE

OFFSET VOLTAGE vs POWER SUPPLY

OPA188 OPA2188 OPA4188 SBOS525 - AUGUST 2011

TYPICAL CHARACTERISTICS (continued)

OPA188 OPA2188 OPA4188 SBOS525 - AUGUST 2011

Figure 23.

Figure 24.

APPLICATION INFORMATION

The OPAx188 family of operational amplifiers combine precision offset and drift with excellent overall performance, making them ideal for many precision applications. The precision offset drift of only 0.085 μ V/°C provides stability over the entire temperature range. In addition, the device offers excellent overall performance with high CMRR, PSRR, and A_{OL}. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1- μ F capacitors are adequate.

OPERATING CHARACTERISTICS

The OPAx188 family of amplifiers is specified for operation from 4 V to 36 V (\pm 2 V to \pm 18 V). Many of the specifications apply from -40°C to +105°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the Typical Characteristics.

EMI REJECTION

The OPAx188 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI interference from sources such as wireless communications and densely populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the OPAx188 benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Figure 39 shows the results of this testing on the OPAx188. Detailed information can also be found in the Application Report EMI Rejection Ratio of Operational Amplifiers (*SBOA128*), available for download from the TI website.

Figure 39. OPAx188 EMIRR Testing

GENERAL LAYOUT GUIDELINES

For best operational performance of the device, good printed circuit board (PCB) layout practices are recommended. Low-loss, $0.1-\mu$ F bypass capacitors should be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single-supply applications.

PHASE-REVERSAL PROTECTION

The OPAx188 family has an internal phase-reversal protection. Many op amps exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input of the OPAx188 prevents phase reversal with excessive common-mode voltage. Instead, the output limits into the appropriate rail. This performance is shown in Figure 40.

Figure 40. No Phase Reversal

CAPACITIVE LOAD AND STABILITY

The dynamic characteristics of the OPAx188 have been optimized for a range of common operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. The simplest way to achieve this isolation is to add a small resistor (for example, R_{OUT} equal to 50 Ω) in series with the output. Figure 41 and Figure 42 illustrate graphs of small-signal overshoot versus capacitive load for several values of R_{OUT} . Also, refer to the Applications Report, *Feedback Plots Define Op Amp AC Performance* (SBOA015), available for download from the TI website, for details of analysis techniques and application circuits.

ELECTRICAL OVERSTRESS

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

These ESD protection diodes also provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA as stated in the Absolute Maximum Ratings. Figure 43 shows how a series input resistor may be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and its value should be kept to a minimum in noise-sensitive applications.

Figure 43. Input Current Protection

An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-current pulse as it discharges through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent it from being damaged. The energy absorbed by the protection circuitry is then dissipated as heat.

When the operational amplifier connects into a circuit, the ESD protection components are intended to remain inactive and not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. Should this condition occur, there is a risk that some of the internal ESD protection circuits may be biased on, and conduct current. Any such current flow occurs through ESD cells and rarely involves the absorption device.

If there is an uncertainty about the ability of the supply to absorb this current, external zener diodes may be added to the supply pins. The zener voltage must be selected such that the diode does not turn on during normal operation.

However, its zener voltage should be low enough so that the zener diode conducts if the supply pin begins to rise above the safe operating supply voltage level.

APPLICATION EXAMPLES

The application examples of Figure 44 and Figure 45 highlight only a few of the circuits where the OPAx188 family of devices can be used.

Figure 44. Discrete INA + Attenuation for ADC with 3.3-V Supply

(1) R_5 provides positive-varying excitation to linearize output.

Figure 45. RTD Amplifier with Linearization

PACKAGE OPTION ADDENDUM

15-Aug-2011

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
OPA2188AID	PREVIEW	SOIC	D	8		TBD	Call TI	Call TI	
OPA2188AIDGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
OPA2188AIDGKT	ACTIVE	MSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
OPA2188AIDR	PREVIEW	SOIC	D	8		TBD	Call TI	Call TI	

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.