

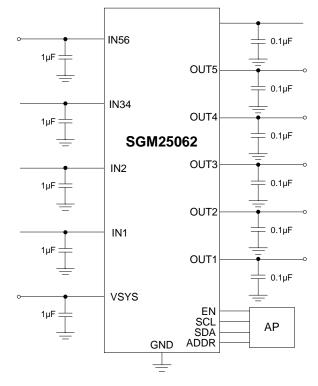
SGM25062 6-Channel Load Switch with I²C Control

GENERAL DESCRIPTION

The SGM25062 is CMOS based 6 channels integrated load switch with I^2C Control.

Load switch 1 to 6 contains P-MOSFET that can operate over an input voltage of 1.2V to 5.5V and supports a maximum continuous current of 2A.

The SGM25062 is available in a Green WLCSP-1.55×1.55-16B package.


FEATURES

- Load Switch 1 to 6 Input Voltage Operating Range: 1.2V to 5.5V
- Load Switch 1 to 6 Typical R_{DSON}: $52m\Omega$ at V_{INX} = 5V $120m\Omega$ at V_{INX} = 1.8V
- V_{BIAS} Input Voltage Operating Range: 1.5V to 5.5V
- I²C Serial Control to Program Each Load Switch On/Off
- Available in a Green WLCSP-1.55×1.55-16B Package

APPLICATIONS

Battery-Powered Device Smartphones, Tablets Cameras, DVRs, STB and Camcorders

TYPICAL APPLICATION

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM25062	WLCSP-1.55×1.55-16B					

MARKING INFORMATION

NOTE: X = Date Code. XX = Date Code. XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Power IN/OUT Pins Voltage (IN1, IN2, IN34, IN56, OUT1	,
OUT2, OUT3, OUT4, OUT5, OUT6, VSYS)0.3V to 6V	
Other Pin Voltage0.3V to V_{VSYS} + 0.3V	
Each Load Switch Maximum Load Current2A	
Junction Temperature+150°C	
Storage Temperature Range65°C to +150°C	
Lead Temperature (Soldering, 10s)+260°C	
ESD	

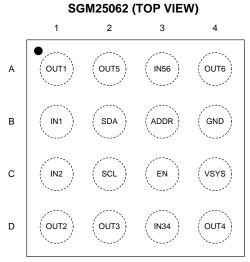
RECOMMENDED OPERATING CONDITIONS

Junction Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

WLCSP-1.55×1.55-16B

PIN DESCRIPTION

PIN	NAME	FUNCTION
A1	OUT1	Load Switch 1 Output.
A2	OUT5	Load Switch 5 Output.
A3	IN56	Load Switch 5 and 6 Supply Input.
A4	OUT6	Load Switch 6 Output.
B1	IN1	Load Switch 1 Supply Input.
B2	SDA	I ² C Interface.
B3	ADDR	I ² C Address Set Pin.
B4	GND	Ground Pin.
C1	IN2	Load Switch 2 Supply Input.
C2	SCL	I ² C Interface.
C3	EN	Load Switch Output Enable (Active High). Device will reset all registers to default value when EN pin is low.
C4	VSYS	System Supply Input.
D1	OUT2	Load Switch 2 Output.
D2	OUT3	Load Switch 3 Output.
D3	IN34	Load Switch 3 and 4 Supply Input.
D4	OUT4	Load Switch 4 Output.

ELECTRICAL CHARACTERISTICS

 $(C_{VSYS} = 1\mu F, T_A = -40^{\circ}C$ to +85°C, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

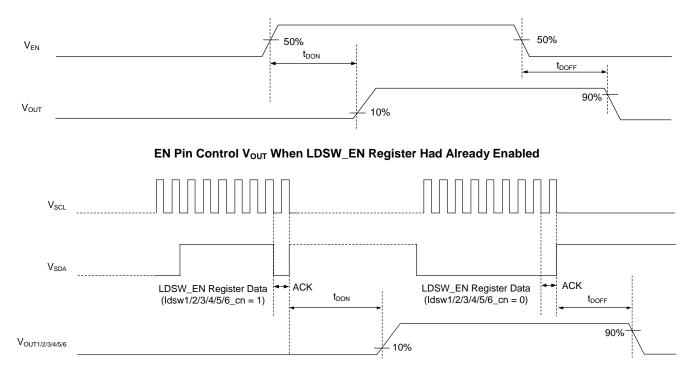
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
VSYS Voltage Range	V _{VSYS}		1.5		5.5	V
VSYS Current	I_{Q_ON}	Active mode: $V_{EN} = V_{VSYS}$ and Enable chip by I^2C			1	μA
VSTS Current	$I_{Q_{OFF}}$	$V_{EN} = 0V$, and $V_{ADDR} = V_{SCL} = V_{SDA} = 0$ or $V_{ADDR} = V_{SCL} = V_{SDA} = V_{VSYS}$			1	μA
EN Pin Pull Down Resistance	R _{EN}		8	12		MΩ
EN Leakage	I _{EN}	V _{EN} = 5V			0.6	μA
EN Input Voltage High	V _{ENH}		1.2			V
EN Input Voltage Low	V _{ENL}				0.4	V
SCL/SDA Input Voltage High	V _{I2CH}		1.2			V
SCL/SDA Input Voltage Low	V _{I2CL}				0.4	V
SDA Logic Low Output	V _{OL}	3mA Sink			0.4	V
SCL/SDA Input Current	I _{I2C}	$\label{eq:sda} \begin{array}{l} \text{EN}=0 \text{ and } V_{\text{SCL}}=V_{\text{SDA}}=V_{\text{VSYS}} \text{ or } V_{\text{SCL}}=\\ V_{\text{SDA}}=0 \end{array}$		0.1		μA
SCL Clock Frequency	F _{SCL}				400	kHz

 $(V_{IN1} = V_{IN2} = V_{IN34} = V_{IN36} = 1.2V$ to 5.5V, $T_A = -40^{\circ}$ C to +85°C, typical values are at $V_{INX} = 3.3V$ and $T_A = +25^{\circ}$ C. $V_{VSYS} = 1.5V$ to 5.5V, unless otherwise noted.)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
Basic Operation								
Input Voltage	V _{INX}		1.2		5.5	V		
		$V_{EN} = GND, V_{OUTX}$ floating, $V_{INX} = 5V$			0.5	μΑ		
Off Supply Current of One Channel LS $T_A = +25^{\circ}C$	I _{QX(OFF)}	$V_{EN} = GND, V_{OUTX}$ floating, $V_{INX} = 3.3V$			0.5			
		$V_{EN} = GND, V_{OUTX}$ floating, $V_{INX} = 1.8V$			0.5			
Shutdown Current of One Channel LS		$V_{EN} = GND, V_{OUTX} = 0V, V_{INX} = 5V$			0.5			
$T_A = +25^{\circ}C$	I _{SD}	$V_{\text{EN}} = GND, V_{\text{OUTX}} = 0V, V_{\text{INX}} = 3.3V$			0.5	μA		
		$V_{EN} = GND, V_{OUTX} = 0V, V_{INX} = 1.8V$			0.5			
Quiescent Current of One channel LS		$V_{\text{EN}} = V_{\text{VSYS}}, \ I_{\text{OUTX}} = 0 mA, \ V_{\text{INX}} = 5 V$			0.5			
$T_A = +25^{\circ}C$	Ι _Q	$V_{\text{EN}} = V_{\text{VSYS}}, \ I_{\text{OUTX}} = 0 m A, \ V_{\text{INX}} = 3.3 V$			0.5	μA		
6		$V_{EN} = V_{VSYS}, \ I_{OUTX} = 0mA, \ V_{INX} = 1.8V$			0.5			
Quiescent Current of One channel LS	I _{Q_R}	$V_{\text{EN}} = V_{\text{VSYS}}, \ I_{\text{OUTX}} = 0 \text{mA}, \ V_{\text{INX}} = 5 \text{V}$		1.5	4			
$T_A = +25^{\circ}C \text{ (RCB on)}$		$V_{\text{EN}} = V_{\text{VSYS}}, \ I_{\text{OUTX}} = 0 m A, \ V_{\text{INX}} = 3.3 V$		0.9	2.5	μA		
		$V_{\text{EN}} = V_{\text{VSYS}}, \ I_{\text{OUTX}} = 0mA, \ V_{\text{INX}} = 1.8V$		0.3	0.8			
		$V_{INX} = 5V$, $I_{OUTX} = 200mA$		52	70			
On-Resistance $T_A = +25^{\circ}C$	R _{ON}	$V_{INX} = 3.3V$, $I_{OUTX} = 200mA$		66	85	mΩ		
		$V_{INX} = 1.8V, I_{OUTX} = 200mA$		120	150			
OUT Pin Discharge Resistance (default)	R _{PD}	$V_{INX} = 3.3V, EN = 0V, V_{OUTX} = 1V, T_A = +25^{\circ}C$		66	100	Ω		
True Reverse Current Blocking								
RCB Protection Trip Point	$V_{T_{RCB}}$	V _{OUT} - V _{INX}		60		mV		
RCB Protection Release Trip Point	V _{R_RCB}	V _{INX} - V _{OUT}		65		mV		
RCB Hysteresis				125		mV		
Vout Shutdown Current	I _{SD_OUT}	LSW off, V_{OUT} = 5.0V, V_{IN} = Short to GND		1.4		μA		
RCB Response Time when Device On ⁽¹⁾	T _{RCB_ON}	V_{OUT} - V_{IN} = 200mV, V_{ON} = High		3		μs		
RCB Response Time Device Off ⁽¹⁾	T _{RCB_OFF}	V_{IN} - V_{OUT} = 200mV, V_{ON} = High		4		μs		

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN1} = V_{IN2} = V_{IN34} = V_{IN56} = 1.2V$ to 5.5V, $T_A = -40^{\circ}$ C to +85°C, typical values are at $V_{INX} = 3.3$ V and $T_A = +25^{\circ}$ C. $V_{VSYS} = 1.5$ V to 5.5V, unless otherwise noted.)


PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
Dynamic Characteristics: See Definitions Below (Default)								
Turn-On Delay ^(1,2)	t _{DON}	V 2.2V P 1500 C 0.1VF		270				
VOUT Rise Time (1.2)	t _R	$V_{INX} = 3.3V, R_{L} = 150\Omega, C_{L} = 0.1\mu F$		340				
Turn-On Delay ^(1,2)	t _{DON}			250		μs		
VOUT Rise Time (1.2)	t _R	$V_{INX} = 3.3V, R_L = 500\Omega, C_L = 0.1\mu F$		320		1		
Turn-Off Delay ^(1,2)	t _{DOFF}	V 22V P 4500 C 24//F		0.8				
VOUT Fall Time (1,2)	t _F	$V_{INX} = 3.3V, R_{L} = 150\Omega, C_{L} = 0.1\mu F$		10.5				
Turn-Off Delay ^(1,2)	t _{DOFF}			1.1		μs		
VOUT Fall Time (1,2)	t _F	$V_{INX} = 3.3V, R_L = 500\Omega, C_L = 0.1\mu F$		14				

NOTES:

1. This parameter is guaranteed by design and characterization; not production tested.

2. $t_{DON}/t_{DOFF}/t_R/t_F$ are defined in Figure 2.

TIMING DIAGRAM

LDSW_EN register Control V_{OUT} when EN Pin had already set to high level

I²C MODE TIMING

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS
F _{SCL}	SCL Clock Frequency.	0	-	400	kHz
t _{BUF}	Bus Free Time Between a STOP and START Condition.	1.3	-	-	μs
t _{HD:STA}	Hold Time (Repeated) START Condition.	0.6	-	-	μs
t _{LOW}	Low Period of SCL Clock.	1.3	-	-	μs
t _{HIGH}	HIGH Period of SCL Clock.	0.6	-	-	μs
t _{SU:STA}	Setup Time for a Repeated START Condition.	0.6	-	-	μs
t _{HD:DAT}	Data Hold Time.	-	-	0.9	μs
t _{SU:DAT}	Data Setup Time.	100	-	-	ns
t _R	Data Hold Time2.	20+0.1Cb ⁽¹⁾	-	300	ns
t _F	Data Hold Time2.	20+0.1Cb	-	300	ns
t _{SU:STO}	Setup Time for STOP Condition.	0.6	-	-	μs

1: C_b = total capacitance of one bus line in PF.

I²C MODE TIMING DIAGRAM

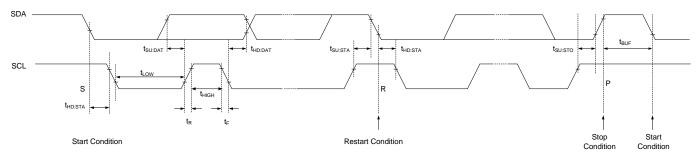
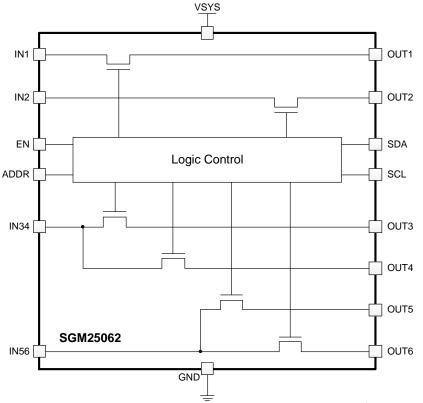



Figure 3. I²C Mode Timing Diagram

FUNCTIONAL BLOCK DIAGRAM

Note: The OUTx port has a fast turn-off discharge circuit. This function can be turned off by I²C command.

Figure 4. Block Diagram

FUNCTIONAL DESCRIPTION

SGM25062 has 6 channels load switch. Load switch 1 to 6 are using P-MOSFET.

Start-Up

The SGM25062 LDSW's can be enabled two ways using the I²C register bits if EN is high.

1. Setting LDSWX_SEQ = 000 in 0x05 (LDSW12_SEQ) or 0x06 (LDSW34_SEQ) or 0x07 (LDSW56_SEQ) and the LDSWX_EN assigned to the LDSW in register, ENABLE to 1.

2. Setting LDSWX_SEQ > 000 in registers and then set seq_ctrl[1:0] = 2'b01 in SEQ_CTR register.

Power-up and shut down of each regulator can be controlled by an I^2C register. It can be set at the registers Idswx_seq[2:0] (x = 1 to 7) respectively. Idswx_en is an internal signal to enable one of regulators, if Idsw_seq[2:0] set to '000', that LDSWX channel can be controlled directly by a bit specified in register LDSW_EN.

3. Automatic power-up/down sequence control.

SGM25062 has seven SLOTs to which each regulator can be assigned.

They are started by seq_ctrl[1:0] signal. when seq_ctrl[1:0] is set '01'. Internal counter seq_cnt[2:0] starts increments from 0 ("000") to 7 ("111"). When seq_ctrl[1:0] is set '10', seq_cnt[2:0] decrements from 7 ("111") to 0 ("000"). Regulators assigned to one of SLOTs starts power-up or power-down.

The seq_cnt[2:0] matches the SLOT number, when seq_cnt[2:0] = 000, it indicates that sequencing has completed or not started.

SGM25062

FUNCTIONAL DESCRIPTION (continued)

Internal logic signal seq_on = 1 indicates that sequencing is executing and somewhere between the start of slot 1 and the end of slot 7, seq_on = 0, it indicates that has completed or not started.

4. EN pin control

When EN pin is in low level, the IC is shut down, all internal circuits are off, and all the parts draw very little current. In this state, all the registers will be reset to their default value, and I^2C cannot be written to or read.

seq_ctrl[1:0] 01	00		(00
seq_on				
seq_cnt[2:0] 0 1 2 3	4 \$ 6 7	0 7	$\left(6 \right) \left(5 \right) \left(4 \right) \left(3 \right) \left(2 \right) \right)$	
OUT1				
OUT2]
OUT3				
OUT4				
OUT5				
OUT6				
Example of power-up in the cas are assigned to SLOT1-SLOT7				vn in the case of OUT1–OUT6 DT1-SLOT7 respectively.

Input and output Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the V_{INX} and GND pins. A 1µF ceramic capacitor, C_{INX} , placed close to the pins is usually sufficient. Higher-value C_{INX} can be used to reduce the voltage drop in higher-current applications.

A 0.1 μ F capacitor, C_{OUTX}, should be placed between the V_{OUTX} and GND pins. This capacitor prevents parasitic board inductance from forcing V_{OUTX} below GND when the switch is on. C_{INX} greater than C_{OUTX} is highly recommended. C_{OUTX} greater than C_{IN} can cause V_{OUTX} to exceed V_{INX} when the system supply is removed. This could result in current flow through the body diode from V_{OUTX} to V_{INX}.

Recommended $C_{VSYS} = 1.0 \mu F$ or greater.

Auto Discharging

For each channel, when shut down the output, the auto-discharging circuit will be turned on to discharge the electric charge on output capacitor, and decrease the voltage of output pin in very short time. The auto-discharging function is optional. Set related bits to select output discharge function for Discharge Resistor (LDSW_DIS Register), "0": Disable. "1": Enable.

FUNCTIONAL DESCRIPTION (continued)

RCB Function

SGM25062 has a true reverse current function that obstructs unwanted reverse current from OUTx to INx during both ON and OFF states. The RCB function can be set by I²C instruction (LDSW_RCB register).

LSWx State	ldswx_rcb	RCB Function
OFF	0	Y
OFF	1	Y
ON	0	Ν
ON	1	Y

NOTES:

1. x is 1~6;

2. LSWx state is controlled by EN pin or LDSW_EN Register.

Serial Port Interface (I²C)

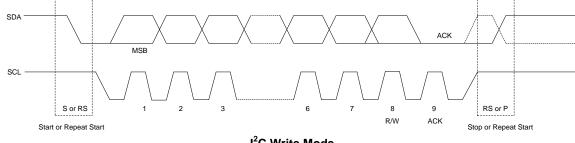
Bus Interface

Baseband Processor can transmit data with SGM25062 each other through SDA and SCL port. SDA and SCL composite bus interface, and a pull-up resistor to the power supply should be connected.

Data Validity

When the SCL signal is high, the data of SDA port is valid and stable. Only when the SCL signal is low, the level on the SDA port can be changed.

Start (Re-start) and Stop Working Conditions


When the SCL signal is high, SDA signal from high to low represents start or re-start working conditions, while the SCL signal is high, SDA signal from low to high represents stop working conditions.

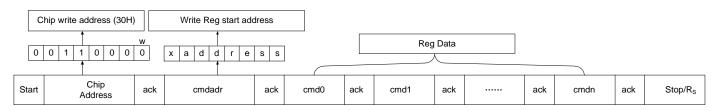
Byte format

Each byte of data line contains 8 bits, which contains an acknowledge bit. The first data is transmitted MSB.

Acknowledge

During the writing mode, SGM25062 will send a low level response signal with one period width to the SDA port. During the reading mode, SGM25062 will not send response signal and the host will send a high response signal one period width to the SDA.

I²C Write Mode


NOTE: ACK = Acknowledge MSB = Most Significant Bit S = Start Conditions RS = Restart Conditions P = Stop Conditions Fastest Transmission Speed = 400kHz Restart: SDA-level turnover as expressed by the dashed line waveform

7bit Chip Address: 0011000b (ADDR connect to GND), 0011001b (ADDR connect to VSYS)

FUNCTIONAL DESCRIPTION (continued)

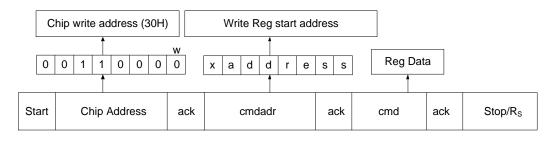
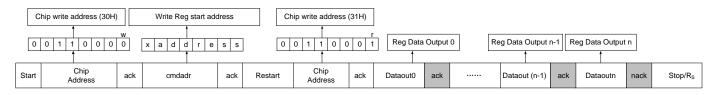

I²C Writing Command Register Interface Protocol (continuous):

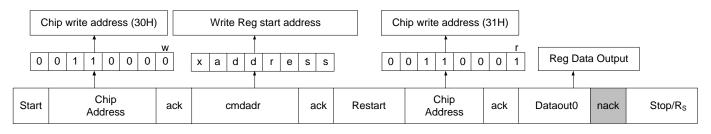
Figure 5. I²C Writing Command Register (continuous)


Start = Start Conditions Chip address = Write register address = 0011000+0(w)b ack = Acknowledge Write Reg start address byte = cmdadr (x + REG's 7bit address) ack = Acknowledge Reg data 0 = cmd0 (Command data0) ack = Acknowledge Reg data n = cmdn (Command datan) ack = Acknowledge Stop/Rs = Stop Condition/Restart Condition

I²C Writing Command Register Interface Protocol (single):

Start = Start Conditions Chip address = Write register address = 0011000+0(w)b ack = Acknowledge Write Reg start address byte = cmdadr (x + REG's 7bit address) ack = Acknowledge Reg data = cmd (Command data) ack = Acknowledge Stop/Rs = Stop Condition/Restart Condition

I²C Reading Command Register Interface Protocol (continuous)



Start = Start Conditions

Chip address = Write register address = 0011000+0(w)b ack = Acknowledge Write Reg start address byte = cmdadr (x+ REG's 7bit address) ack = Acknowledge from SGM25062 Restart = Restart condition Chip address Read register address=0011000+1(r)b ack = Acknowledge from SGM25062 Dataout0 = Register data output 0 ack = Acknowledge from Host

Dataoutn = Register data output n nack = No Acknowledge from Host Stop/Rs = Stop Condition/Restart Condition

I²C Reading Command Register Interface Protocol (Single)

Start = Start Conditions Chip address = Write register address = 0011000+0(w)b ack = Acknowledge from SGM25062 Write Reg start address byte = cmdadr (x + REG's 7bit address) ack = Acknowledge from SGM25062 Restart = Restart condition Chip address Read register address = 0011000+1(r)b ack = Acknowledge from SGM25062 Dataout = Register data output nack = No Acknowledge from Host

Stop/Rs = Stop Condition/Restart Condition

Register Map

Addr	Name	RST	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x00	CHIPID	0x30				001100			chip_id[1:0]		
0x01	VERID	0x00				000000			ver_io	d[1:0]	
0x02	LDSW_EN	0x00	0	0	ldsw6_en	ldsw5_en	ldsw4_en	ldsw3_en	ldsw2_en	ldsw1_en	
0x03	LDSW_DIS	0x3F	0	0	ldsw6_dis	ldsw5_dis	ldsw4_dis	ldsw3_dis	ldsw2_dis	ldsw1_dis	
0x04	LDSW_TR0	0x00	0	0	ldsw6_tr0	ldsw5_tr0	ldsw4_tr0	ldsw3_tr0	ldsw2_tr0	ldsw1_tr0	
0x05	LDSW12_SEQ	0x00	0	0		ldsw2_seq[2:0]		lo	ldsw1_seq[2:0]		
0x06	LDSW34_SEQ	0x00	0	0		ldsw4_seq[2:0]		lo	ldsw3_seq[2:0]		
0x07	LDSW56_SEQ	0x00	0	0		ldsw6_seq[2:0]		lo	ldsw5_seq[2:0]		
0x08	SEQ_CTR	0x00	seq_spe	eed[1:0]	seq_ctrl[1:0] seq_on seq_cnt[2:			seq_cnt[2:0]			
0x09	LDSW_TR1	0x00	0	0	ldsw6_tr1	ldsw5_tr1	ldsw4_tr1	ldsw3_tr1	ldsw2_tr1	ldsw1_tr1	
0x0A	LDSW_RCB	0x00	0	0	ldsw6_rcb	ldsw5_rcb	ldsw4_rcb	ldsw3_rcb	ldsw2_rcb	ldsw1_rcb	
0x0B	LDSW_STA	0x00	0	0	ldsw6_sta	ldsw5_sta	ldsw4_sta	ldsw3_sta	ldsw2_sta	ldsw1_sta	
0x69	SOFTRST_CTR	0x00		Write B0H to this register can reset all the registers to their default value							

NOTE: Rev.- Reserve, keep "0".

Register Description

0x00 CHIPID Register----Indicates the product ID with revision. Default = 0x30 chip_id[1:0] Indicates the product ID with revision. Read only.

0x01 VERID Register----Indicates the device ID with revision. Default = 0x00

ver_id[1:0] Indicates the device ID with revision. Read only.

0x02 LDSW_EN Register----LDSWs enable control register. Default = 0x00

Load Switch enable control register by I²C while the register value of ldswx_seq[2:0] are set to be default "000". This register can be written to enable or disable the corresponding LDSW regulator.

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reverse
6	Rev.	0	R	Reverse
5	ldsw6_en	0	R/W	LDSW6 enable control: 0b: Disable 1b: Enable
4	ldsw5_en	0	R/W	LDSW5 enable control: 0b: Disable 1b: Enable
3	ldsw4_en	0	R/W	LDSW4 enable control: 0b: Disable 1b: Enable
2	ldsw3_en	0	R/W	LDSW3 enable control : 0b:Disable 1b: Enable
1	ldsw2_en	0	R/W	LDSW2 enable control: 0b: Disable 1b: Enable
0	ldsw1_en	0	R/W	LDSW1 enable control: 0b: Disable 1b: Enable

0x03 LDSW_DIS Register----Discharge Resistor Selection. Default = 0x3F

Each LDSW regulators output discharge resistor enable control.

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reversed
6	Rev.	0	R	Reversed
5	ldsw6_dis	1	R/W	LDSW6 Discharge Enabled/Disabled control : 0b:Disable Pull down will not be activated when LDSW6 is disabled by any event 1b: Enable Pull down will be activated when LDSW6 is disabled by EN going low or ldsw6_en = 0 or a Sequenced shutdown
4	ldsw5_dis	1	R/W	LDSW5 Discharge Enabled/Disabled control: 0b:Disable Pull down will not be activated when LDSW5 is disabled by any event 1b: Enable Pull down will be activated when LDSW5 is disabled by EN going low or ldsw5_en = 0 or a Sequenced shutdown
3	ldsw4_dis	1	R/W	LDSW4 Discharge Enabled/Disabled control: 0b:Disable Pull down will not be activated when LDSW4 is disabled by any event 1b: Enable Pull down will be activated when LDSW4 is disabled by EN going low or ldsw4_en = 0 or a Sequenced shutdown
2	ldsw3_dis	1	R/W	LDSW3 Discharge Enabled/Disabled control: 0b:Disable Pull down will not be activated when LDSW3 is disabled by any event 1b: Enable Pull down will be activated when LDSW3 is disabled by EN going low or ldsw3_en = 0 or a Sequenced shutdown
1	ldsw2_dis	1	R/W	LDSW2 Discharge Enabled/Disabled control: 0b:Disable Pull down will not be activated when LDSW2 is disabled by any event 1b: Enable Pull down will be activated when LDSW2 is disabled by EN going low or ldsw2_en = 0 or a Sequenced shutdown
0	ldsw1_dis	1	R/W	LDSW1 Discharge Enabled/Disabled control : 0b:Disable Pull down will not be activated when LDSW1 is disabled by any event 1b: Enable Pull down will be activated when LDSW1 is disabled by EN going low or ldsw1_en = 0 or a Sequenced shutdown

0x04/09H LDSW_TR0/1 Register----Load Switch output voltage rise timing Selection. Default = 0x00

$V_{INX} = 3.3$	$V_{INX} = 3.3V, R_L = 150\Omega, C_L = 0.1\mu F$							
Bit	Name	Default	Туре	Description				
7	Rev.	00/00	R	Reversed				
6	Rev.	00/00	R	Reversed				
5	ldsw6_tr1 ldsw6_tr0	00	R/W	LDSW6 output voltage (from 10% to 90%) rise time setting control: 00b: 340µs 01b: 32µs 10b: 150µs 11b: 1000µs				
4	ldsw5_tr1 ldsw5_tr0	00	R/W	LDSW5 output voltage (from 10% to 90%) rise time setting control: 00b: 340µs 01b: 32µs 10b: 150µs 11b: 1000µs				
3	ldsw4_tr1 ldsw4_tr0	00	R/W	LDSW4 output voltage (from 10% to 90%) rise time setting control: 00b: 340µs 01b: 32µs 10b: 150µs 11b: 1000µs				
2	ldsw3_tr1 ldsw3_tr0	00	R/W	LDSW3 output voltage (from 10% to 90%) rise time setting control: 00b: 340µs 01b: 32µs 10b: 150µs 11b: 1000µs				
1	ldsw2_tr1 ldsw2_tr0	00	R/W	LDSW2 output voltage (from 10% to 90%) rise time setting control: 00b: 340µs 01b: 32µs 10b: 150µs 11b: 1000µs				
0	ldsw1_tr1 ldsw1_tr0	00	R/W	LDSW1 output voltage (from 10% to 90%) rise time setting control: 00b: 340µs 01b: 32µs 10b: 150µs 11b: 1000µs				

0x05 LDSW12_SEQ Register----Power sequence setting register. Default = 0x00

Power sequence setting register. There are 7 time slots defined as following table. The power-up sequence is start from slot1 to slot7, and shut down start from slot7 to slot1. Power-up and shut down of each LDSW1/2 regulator can be set at any one of the slots.

Bit	Name	Default	Туре	Description
7:6	Rev.	00	R	Reserved
5:3	ldsw2_seq[2:0]	000	R/W	VOUT2 000: Controlled by I ² C register ldsw2_en 001: Slot1 010: Slot2 011: Slot3 100: Slot4 101: Slot5 110: Slot6 111: Slot7
2:0	ldsw1_seq[2:0]	000	R/W	VOUT1 000: Controlled by I ² C register ldsw1_en 001: Slot1 010: Slot2 011: Slot3 100: Slot4 101: Slot5 110: Slot6 111: Slot7

0x06 LDSW34_SEQ Register----Power sequence setting register. Default = 0x00

Power sequence setting register. there are 7 time slots defined as following table. The power-up sequence is start from slot1 to slot7, and shut down start from slot7 to slot1. Power-up and shut down of each LDSW3/4 regulator can be set at any one of the slots.

Bit	Name	Default	Туре	Description
7:6	Rev.	00	R	Reserved
5:3	ldsw4_seq[2:0]	000	R/W	VOUT4 000: Controlled by I ² C register ldsw4_en 001: Slot1 010: Slot2 011: Slot3 100: Slot4 101: Slot5 110: Slot6 111: Slot7
2:0	ldsw3_seq[2:0]	000	R/W	VOUT3 000: Controlled by I ² C register ldsw3_en 001: Slot1 010: Slot2 011: Slot3 100: Slot4 101: Slot5 110: Slot6 111: Slot7

0x07 LDSW56_SEQ Register----Power sequence setting register. Default = 0x00

Power sequence setting register. there are 7 time slots defined as following table. The power-up sequence is start from slot1 to slot7, and shut down start from slot7 to slot1. Power-up and shut down of each LDSW5/6 regulator can be set at any one of the slots.

Bit	Name	Default	Туре	Description
7:6	Rev.	00	R	Reserved
5:3	ldsw6_seq[2:0]	000	R/W	VOUT6 000: Controlled by I ² C register ldsw6_en 001: Slot1 010: Slot2 011: Slot3 100: Slot4 101: Slot5 110: Slot6 111: Slot7
2:0	ldsw5_seq[2:0]	000	R/W	VOUT5 000: Controlled by l ² C register ldsw5_en 001: Slot1 010: Slot2 011: Slot3 100: Slot4 101: Slot5 110: Slot6 111: Slot7

Bit	Name	Default	Туре	Description
7:6	seq_speed[1:0]	00	R/W	Define the slot period as following: 00: 0.5ms 01: 1.0ms 10: 1.5ms 11: 2.0ms
5:4	seq_ctrl[1:0]	00	W/C	Enables power-up or shut down of SEQ: 00: Default 01: Starts an LDSW power up sequence 10: Starts an LDSW shutdown sequence 11: Bit configuration is ignored Note: The bits will always clear immediately when written to and always read back 00.
3	seq_on	0	R	Indicates the activation signal of SEQ. 0b: Indicates that the sequencing is not in process 1b: Indicates that the sequencing is executing and somewhere between the start of slot 1 and the end of slot 7. The bit remains a 1 until slot 7 has completed at start-up or slot 1 has finished at shutdown, regardless of what slots are used.
2:0	seq_cnt[2:0]	000	R	Indicates the slot number of SEQ at the moment: 000: Sequencing has completed or not started. 001: Indicates was in slot 1 during register read 010: Indicates was in slot 2 during register read 011: Indicates was in slot 3 during register read 100: Indicates was in slot 4 during register read 101: Indicates was in slot 5 during register read 101: Indicates was in slot 5 during register read 110: Indicates was in slot 5 during register read 111: Indicates was in slot 7 during register read

0x0A LDSW_RCB Register----RCB Function Selection. Default = 0x00

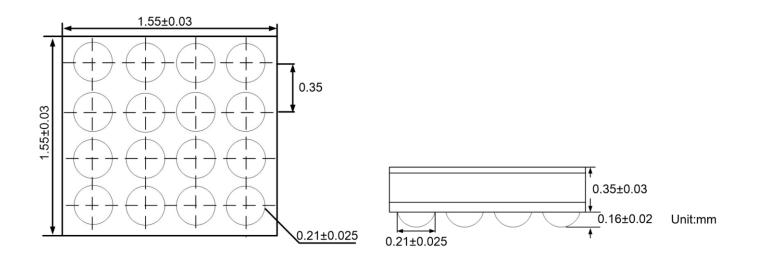
This register enables the function blocking the current of load switch when the output voltage is higher than input.

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
6	Rev.	0	R	Reserved
5	ldsw6_rcb	0	R/W	LDSW6 reverse current blocking function: 0b:Disable 1b: Enable
4	ldsw5_rcb	0	R/W	LDSW5 reverse current blocking function: 0b:Disable 1b: Enable
3	ldsw4_rcb	0	R/W	LDSW4 reverse current blocking function: 0b:Disable 1b: Enable
2	ldsw3_rcb	0	R/W	LDSW3 reverse current blocking function: 0b:Disable 1b: Enable
1	ldsw2_rcb	0	R/W	LDSW2 reverse current blocking function: 0b:Disable 1b: Enable
0	ldsw1_rcb	0	R/W	LDSW1 reverse current blocking function: 0b:Disable 1b: Enable

0x0B LDSW_STA Register----LDSW Status Register. Default = 0x00

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
6	Rev.	0	R	Reserved
5	ldsw6_sta	0	R	LDSW6 Status Bit: 0b:Turn off Status 1b: Turn on Status
4	ldsw5_sta	0	R	LDSW5 Status Bit: 0b:Turn off Status 1b: Turn on Status
3	ldsw4_sta	0	R	LDSW4 Status Bit: 0b:Turn off Status 1b: Turn on Status
2	ldsw3_sta	0	R	LDSW3 Status Bit: 0b:Turn off Status 1b: Turn on Status
1	ldsw2_sta	0	R	LDSW2 Status Bit: 0b:Turn off Status 1b: Turn on Status
0	ldsw1_sta	0	R	LDSW1 Status Bit: 0b:Turn off Status 1b: Turn on Status

0x69 SOFTRST_CTR Register----Software Reset Signal. Default = 0x00


Write B0H to this register will be produced a reset signal, this signal will reset all the registers to the default value.

Bit	Name	Default	Туре	Description
7:0	softrst_ctr	00H	R////	Write B0H to this register will reset all the registers to default value, the read value always keep "00H".

PACKAGE OUTLINE DIMENSIONS

WLCSP-1.55×1.55-16B

