

74LVTH16373 3.3V, 16-Bit D-Type Transparent Latch with 3-State Outputs

GENERAL DESCRIPTION

The 74LVTH16373 is a high performance product designed for V_{CC} operation at 3.3V. This device is a 16-bit D-type transparent latch with non-inverting 3-state bus compatible outputs, designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The device can be used as two 8-bit latches or one 16-bit latch. When latch enable (nLE) input is high, the nQn outputs follow the data nDn inputs. When nLE input is taken low, the nQn outputs are latched at the levels of the nDn inputs one set-up time prior to the high-to-low transition.

A buffered output enable $(n\overline{OE})$ input can be used to place the 8 outputs in either a normal logic state (high or low logic levels) or a high-impedance state.

The 74LVTH16373 bus hold on data inputs eliminates the need for external pull-up/pull-down resistors to hold unused inputs.

FEATURES

- 16-Bit Transparent Latch
- 3-State Buffers
- Output Capability: +64mA/-32mA
- TTL Input and Output Switching Levels
- Input and Output Interface Capability to Systems at 5V Supply
- Bus Hold on Data Inputs Eliminates the Need for External Pull-Up/Pull-Down Resistors
- Live Insertion and Extraction Permitted
- Power-Up Reset
- Power-Up 3-State
- No Bus Current Loading When Output is Tied to 5V Bus
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-48 Package

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVTH16373	TSSOP-48	-40°C to +125°C	74LVTH16373XTS48G/TR	74LVTH16373 XTS48 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

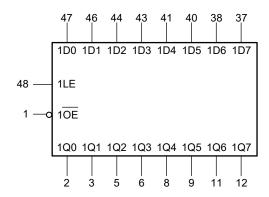
Supply Voltage, V _{CC}	0.5V to 4.6V
Input Voltage, V _I ⁽²⁾	0.5V to 7V
Output Voltage, V _O ⁽²⁾	
Output in 3-State or High-State	0.5V to 7V
Input Clamping Current, $I_{IK}(V_I < 0V)$	50mA
Output Clamping Current, $I_{OK}(V_O < 0V)$	50mA
Output Current, I _O	
Output in High-State	64mA
Output in Low-State	128mA
Supply Current, I _{CC}	128mA
Ground Current, I _{GND}	256mA
Junction Temperature (3)	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	8000V
CDM	1000V

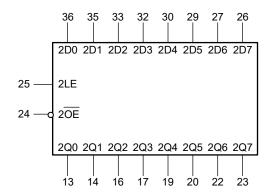
RECOMMENDED OPERATING CONDITIONS

INCOMINICIADED OF CINATIN	O COMPINIONS
Supply Voltage, V _{CC}	2.7V to 3.6V
Input Voltage, V _I	0V to 5.5V
High-Level Output Current, IOH	32mA
Low-Level Output Current, I _{OL}	64mA
Input Transition Rise and Fall Rate, Δt/Δ	V
	10ns/V (MAX)
Operating Temperature Range	

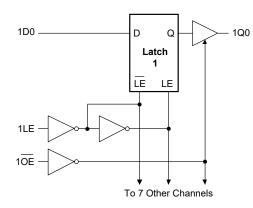
OVERSTRESS CAUTION

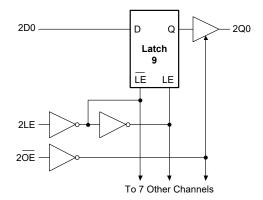
- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER


SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

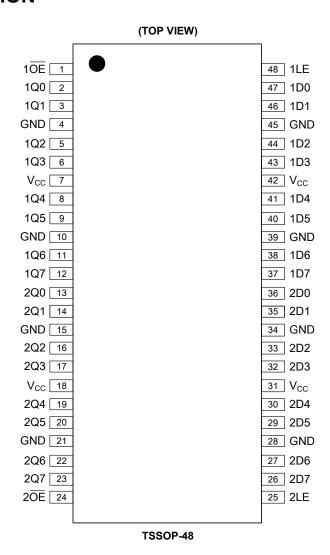

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	co	NTROL INP	UT	INTERNAL	OUTPUT
OPERATING MODE	nŌĒ	nLE	nDn	REGISTER	nQn
Enable and Read Register	L	Н	L	L	L
(Transparent Mode)	L	Н	Н	Н	Н
Lately and David Daviston	L	L	I	L	L
Latch and Read Register	L	L	h	Н	Н
	Н	L	1	L	Z
Latch Register and Disable Outputs	Н	L	h	Н	Z

H = High Voltage Level


L = Low Voltage Level

h = High Voltage Level One Set-Up Time Prior to the High-to-Low LE Transition

I = Low Voltage Level One Set-Up Time Prior to the High-to-Low LE Transition

Z = High-Impedance State

PIN CONFIGURATION

PIN DESCRIPTION

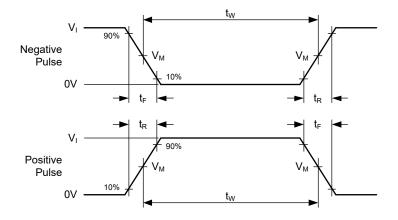
PIN	NAME	FUNCTION
47, 46, 44, 43, 41, 40, 38, 37	1D0, 1D1, 1D2, 1D3, 1D4, 1D5, 1D6, 1D7	Data Inputs.
36, 35, 33, 32, 30, 29, 27, 26	2D0, 2D1, 2D2, 2D3, 2D4, 2D5, 2D6, 2D7	Data Inputs.
1, 24	1 0 E, 2 0 E	Output Enable Inputs (Active Low).
48, 25	1LE, 2LE	Latch Enable Inputs (Active High).
2, 3, 5, 6, 8, 9, 11, 12	1Q0, 1Q1, 1Q2, 1Q3, 1Q4, 1Q5, 1Q6, 1Q7	Data Outputs.
13, 14, 16, 17, 19, 20, 22, 23	2Q0, 2Q1, 2Q2, 2Q3, 2Q4, 2Q5, 2Q6, 2Q7	Data Outputs.
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground.
7, 18, 31, 42	V _{CC}	Supply Voltage.

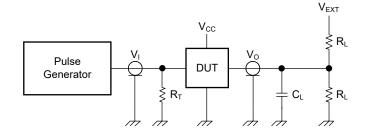
ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITI	ONS	TEMP	MIN	TYP	MAX	UNITS
Input Clamping Voltage	V _{IK}	V _{CC} = 2.7V, I _{IK} = -18mA		Full	-1.2	-0.78		V
High-Level Input Voltage	V _{IH}	V _{CC} = 2.7V to 3.6V		Full	2			V
Low-Level Input Voltage	V _{IL}	V _{CC} = 2.7V to 3.6V		Full			8.0	V
		$I_{OH} = -100 \mu A$, $V_{CC} = 2.7 V$ to	3.6V	Full	V _{CC} - 0.05	V _{CC} - 0.001		
High-Level Output Voltage	V_{OH}	I _{OH} = -8mA, V _{CC} = 2.7V		Full	2.45	2.6		V
		$I_{OH} = -32 \text{mA}, V_{CC} = 3.0 \text{V}$		Full	2.1	2.65		
		\/ - 2.7\/	I _{OL} = 100μA	Full		0.001	0.05	
		V _{CC} = 2.7V	I _{OL} = 24mA	Full		0.15	0.28	
Low-Level Output Voltage	V_{OL}		I _{OL} = 16mA	Full		0.1	0.18	V
		V _{CC} = 3.0V	I _{OL} = 32mA	Full		0.2	0.36	
			I _{OL} = 64mA	Full		0.4	0.55	
Power-Up Low-Level Output Voltage (1)	$V_{OL_{PU}}$	$V_{CC} = 3.6V, I_{OL} = 1mA, V_{I} = V_{I}$	V _{CC} or GND	Full		5	50	mV
		Control pins, V _{CC} = 3.6V, V _I	= V _{CC} or GND	Full		±0.01	±1	
		Control pins, V _{CC} = 0V or 3.6	Full		0.01	5		
Input Leakage Current	I _I	Input data pins (2), V _{CC} = 0V	Full		0.4	5	μА	
		Input data pins (2), V _{CC} = 3.6	Full		0.3	2		
		Input data pins (2), V _{CC} = 3.6	Full	-2	-0.01			
0# 01-1- 0-1-1-1		V 0.0V	V _O = 3.0V	Full		0.01	2	μА
Off-State Output Current	l _{oz}	$V_{CC} = 3.6V$	V _O = 0.5V	Full	-2	-0.01		
Output Leakage Current	I _{LO}	Output in high-state when V $V_0 = 5.5V$, $V_{CC} = 3.0V$		Full		1	30	μΑ
Power-Up/Down Output Current	I _{O_PU/PD}	$V_{CC} \le 1.2V$, $V_{O} = 0.5V$ to V_{CC} $n\overline{OE} = don't care$	$_{C}$, V_{I} = GND or V_{CC} ,	+25°C		0.01	10	μΑ
Power-Off Leakage Current	I _{OFF}	$V_{CC} = 0V$, V_I or $V_O = 0V$ to 5	.5V	Full		0.01	10	μA
		V _{CC} = 3.6V,	Outputs high	Full		12	80	
Supply Current	I _{cc}	$V_I = GND \text{ or } V_{CC},$	Outputs low	Full		12	80	μA
		$I_{O} = 0A$	Outputs disabled (3)	Full		12	80	
Additional Supply Current ⁽⁴⁾	ΔI_{CC}	Per input pin, V_{CC} = 3.0V to V_{CC} - 0.6V, other inputs at V		Full		0.2	200	μA
Input Capacitance	Cı	Input pins, V _I = 0V or 3.0V		+25°C		6		pF
Output Capacitance	Co	Output pins nQn, outputs disabled, $V_0 = 0V$ or V_{CC}		+25°C		9		pF
Bus Hold Low Current	I _{BHL}	$V_{CC} = 3.0V, V_1 = 0.8V$		Full	50	100		μA
Bus Hold High Current	I _{BHH}	$V_{CC} = 3.0V, V_1 = 2.0V$		Full		-130	-75	μA
Bus Hold Low Overdrive Current ⁽⁵⁾	I _{BHLO}	Input data pins, V _I = 0V to 3	.6V, V _{CC} = 3.6V	Full	500	200		μΑ
Bus Hold High Overdrive Current (5)	I _{BHHO}	Input data pins, $V_i = 0V$ to 3	.6V, V _{CC} = 3.6V	Full		-280	-500	μA

NOTES:


- 1. For valid test results, data must not be loaded into the latches after applying power.
- 2. Unused pins at V_{CC} or GND.
- 3. I_{CC} is measured with outputs pulled to V_{CC} or GND.
- 4. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.
- 5. This is the bus hold overdrive current required to force the input to the opposite logic state.


DYNAMIC CHARACTERISTICS

(For test circuit, see Figure 1. All typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITI	ONS	TEMP	MIN	TYP	MAX	UNITS
Laurta Llink Decembration Dalau		anna ta anna anna Fireira 2	V _{CC} = 2.7V	+25°C		3.4		
Low to High Propagation Delay	t _{PLH}	nDn to nQn, see Figure 2	V _{CC} = 3.0V to 3.6V	+25°C		3.4		ns
Lligh to Low Dropogation Dolov		nDn to nOn one Figure 2	V _{CC} = 2.7V	+25°C		3.8		no
High to Low Propagation Delay	t _{PHL}	nDn to nQn, see Figure 2	V _{CC} = 3.0V to 3.6V	+25°C		3.5		ns
Low to High Propagation Dolov			V _{CC} = 2.7V	+25°C		3.6		200
Low to High Propagation Delay	t _{PLH}	nLE to nQn, see Figure 3	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C		3.6		ns
Lligh to Low Dropogation Dolov			V _{CC} = 2.7V	+25°C		4		200
High to Low Propagation Delay	t _{PHL}	nLE to nQn, see Figure 3	V _{CC} = 3.0V to 3.6V	+25°C		4		ns
Off State to Lligh Propagation Delay		70F to 207 and Figure 4	V _{CC} = 2.7V	+25°C		5.3		no
Off-State to High Propagation Delay	t _{PZH}	nOE to nQn, see Figure 4	V _{CC} = 3.0V to 3.6V	+25°C		4.9		ns
0,001111	elay t _{PZL}	70F to 202 and Figure 4	V _{CC} = 2.7V	+25°C		5		no
Off-State to Low Propagation Delay		nOE to nQn, see Figure 4	V _{CC} = 3.0V to 3.6V	+25°C		4.9		ns
High to Off-State Propagation Delay		nOE to nQn, see Figure 4	V _{CC} = 2.7V	+25°C		4.9		no
Inigh to Oh-State Propagation Delay	t _{PHZ}	INOE to non, see Figure 4	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C		4.6		ns
Low to Off State Propagation Polar		70E to 202 and Figure 4	V _{CC} = 2.7V	+25°C		5.4		200
Low to Off-State Propagation Delay	t_{PLZ}	nOE to nQn, see Figure 4	V _{CC} = 3.0V to 3.6V	+25°C		5.4		ns
High Set-Up Time	+	nDn to nLE, see Figure 5	V _{CC} = 2.7V	+25°C		0.3		no
Inight Set-Op Time	t _{suh}	Indit to file, see Figure 5	V _{CC} = 3.0V to 3.6V	+25°C		0.3		ns
Law Cat Un Time		a Dan to all El ann Eigeann E	V _{CC} = 2.7V	+25°C		0.3		
Low Set-Up Time	t _{suL}	nDn to nLE, see Figure 5	V _{CC} = 3.0V to 3.6V	+25°C		0.3		ns
Lligh Hold Time	4	nDn to nl E coo Figure F	V _{CC} = 2.7V	+25°C		0.2		200
High Hold Time	t _{HH}	nDn to nLE, see Figure 5	V _{CC} = 3.0V to 3.6V	+25°C		0.2		ns
Law Hald Time	4	a Dan to a L. F. and Figure 5	V _{CC} = 2.7V	+25°C		0.2		
Low Hold Time	t _{HL}	nDn to nLE, see Figure 5	V _{CC} = 3.0V to 3.6V	+25°C		0.2		ns
History Dudge Width		ml E. ann Firmura 2	V _{CC} = 2.7V	+25°C		1.5		
High Pulse Width	t _{WH}	nLE, see Figure 3	V _{CC} = 3.0V to 3.6V	+25°C		1.5		ns

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

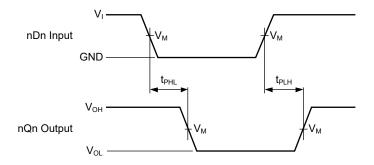
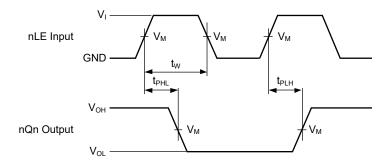

V_{EXT} = External voltage for measuring switching times.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT				LO	AD		V _{EXT}	
V _{CC}	Vı	fı	t _W	t _R , t _F	CL	R _L	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
2.7V to 3.6V	2.7V	≤ 10MHz	500ns	≤ 2.5ns	50pF	500Ω	GND	6V	open

WAVEFORMS

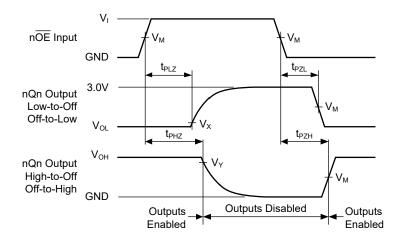


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nDn) to Output (nQn) Propagation Delays

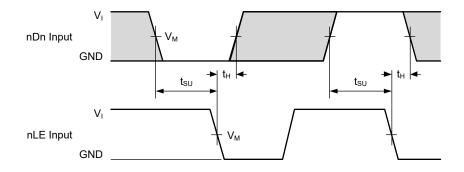

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Latch Enable Input Pulse Width and the Latch Enable Input to Output Propagation Delays

WAVEFORMS (continued)



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 4. Enable and Disable Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

The shaded areas indicate when the input is permitted to change for predictable output performance.

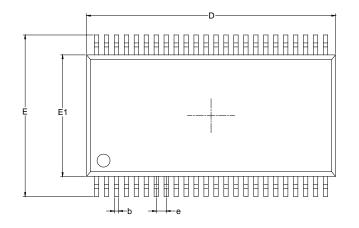
Figure 5. Data Set-Up and Hold Times for the nDn Input to the nLE Input

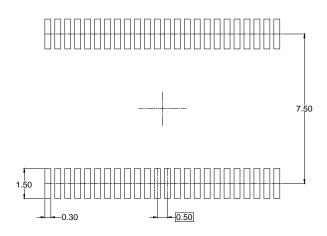
Table 2. Measurement Points

SUPPLY VOLTAGE	INF	TUT			
V _{cc}	Vı	V _M	V _M	V _X	V _Y
2.7V to 3.6V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V

3.3V, 16-Bit D-Type Transparent Latch with 3-State Outputs

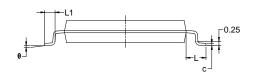
74LVTH16373


REVISION HISTORY

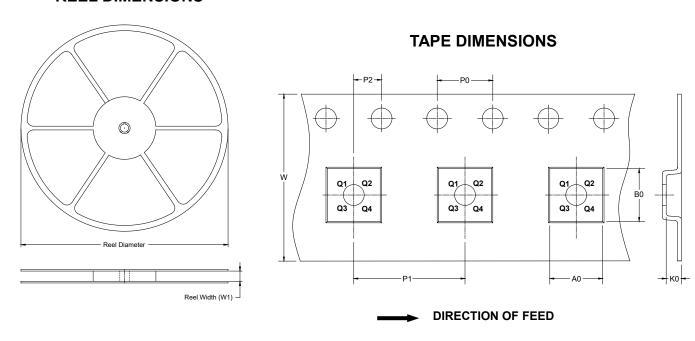

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (MARCH 2021) to REV.A

Page


PACKAGE OUTLINE DIMENSIONS TSSOP-48

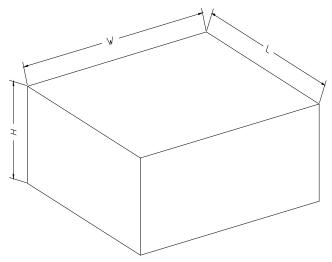
RECOMMENDED LAND PATTERN (Unit: mm)



Cumbal	D	imensions In Millimet	ers				
Symbol	MIN	MOD	MAX				
Α			1.20				
A1	0.05	0.10	0.15				
A2	0.85	0.95	1.05				
b	0.18		0.26				
С	0.15		0.19				
D	12.40	12.50	12.60				
E	7.90	8.10	8.30				
E1	6.00	6.10	6.20				
е		0.50 BSC					
L		1.00 REF					
L1	0.45		0.75				
θ	0°		8°				

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-48	13"	24.4	8.60	13.00	1.80	4.0	12.0	2.0	24.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5