

Automotive, 40V, 300mA, Low Quiescent Current and Low Dropout Voltage Linear Regulator

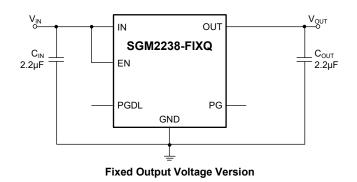
GENERAL DESCRIPTION

The SGM2238xQ is a high voltage, low quiescent current and low dropout voltage linear regulator. It is capable of supplying 300mA output current with typical dropout voltage of 410mV. The operating input voltage range is from 3V to 40V. The fixed output voltage range is from 1.8V to 12V and the adjustable output voltage range is from 1.25V to 24V.

Other features include logic-controlled shutdown mode, short-circuit current limit and thermal shutdown protection. The SGM2238xQ has automatic discharge function to quickly discharge V_{OUT} in the disabled status.

This device is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

The SGM2238xQ is available in a Green SOIC-8 (Exposed Pad) package. It operates over an operating temperature range of -40°C to +125°C.


FEATURES

- AEC-Q100 Qualified for Automotive Applications
 Device Temperature Grade 1
 - $T_A = -40^{\circ}C$ to +125°C
- Operating Input Voltage Range: 3V to 40V
- Enable Pin Accept Voltages Higher than the Supply Voltage and up to 40V
- Fixed Output from 1.8V to 12V
- Adjustable Output from 1.25V to 24V
- 300mA Output Current
- Low Quiescent Current: 3.3µA (TYP)
- Low Dropout Voltage:
 410mV (TYP) at 300mA, V_{OUT} = 5V
- Current Limiting and Thermal Protection
- Support Power-Good Indicator Function
- With Output Automatic Discharge
- Stable with Small Case Size Ceramic Capacitors
- -40℃ to +125℃ Operating Temperature Range
- Available in a Green SOIC-8 (Exposed Pad)
 Package

APPLICATIONS

Automotive
Battery-Powered Equipment
Ultra-Low Power System
Medical Equipment
Industrial Equipment

TYPICAL APPLICATION

SGM2238-ADJQ
EN
FB
PGDL
PG
GND
Adjustable Output Voltage Version

Figure 1. Typical Application Circuits

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM2238-1.8Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-1.8QPS8G/TR	1DZPS8 XXXXX	Tape and Reel, 4000	
SGM2238-2.5Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-2.5QPS8G/TR	1E0PS8 XXXXX	Tape and Reel, 4000	
SGM2238-3.0Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-3.0QPS8G/TR	1E1PS8 XXXXX	Tape and Reel, 4000	
SGM2238-3.3Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-3.3QPS8G/TR	160PS8 XXXXX	Tape and Reel, 4000	
SGM2238-3.6Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-3.6QPS8G/TR	1E2PS8 XXXXX	Tape and Reel, 4000	
SGM2238-4.2Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-4.2QPS8G/TR	1E3PS8 XXXXX	Tape and Reel, 4000	
SGM2238-5.0Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-5.0QPS8G/TR	15ZPS8 XXXXX	Tape and Reel, 4000	
SGM2238-8.0Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-8.0QPS8G/TR	1E4PS8 XXXXX	Tape and Reel, 4000	
SGM2238-9.0Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-9.0QPS8G/TR	1E5PS8 XXXXX	Tape and Reel, 4000	
SGM2238-12Q	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-12QPS8G/TR	161PS8 XXXXX	Tape and Reel, 4000	
SGM2238-ADJQ	SOIC-8 (Exposed Pad)	-40°C to +125°C (T _A)	SGM2238-ADJQPS8G/TR	162PS8 XXXXX	Tape and Reel, 4000	

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

Automotive, 40V, 300mA, Low Quiescent Current and Low Dropout Voltage Linear Regulator

ABSOLUTE MAXIMUM RATINGS

IN, EN to GND	0.3V to 45V
OUT, FB to GND	0.3V to 45V
PG to GND	0.3V to 45V
PGDL to GND	0.3V to 6V
Package Thermal Resistance	
SOIC-8 (Exposed Pad), θ _{JA}	40°C/W
SOIC-8 (Exposed Pad), θ _{JB}	16.7°C/W
SOIC-8 (Exposed Pad), θ _{JC(TOP)}	55.9°C/W
SOIC-8 (Exposed Pad), θ _{JC(BOT)}	6°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C

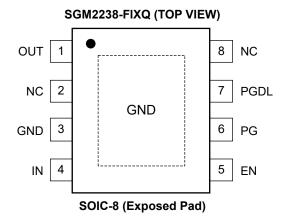
RECOMMENDED OPERATING CONDITIONS

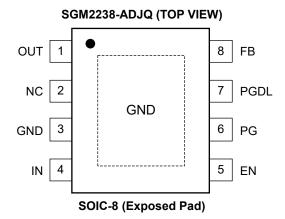
Supply Voltage Range, V _{IN} 3V to 40V	integrated circuits may be mor
Enable Input Voltage Range, V _{EN} 3V to 40V	because even small parametric
Input Effective Capacitance, C _{IN} 1µF (MIN)	device not to meet the published s
Output Effective Capacitance, C _{OUT} 1µF to 100µF	
Operating Ambient Temperature Range40°C to +125°C	DISCLAIMER
Operating Junction Temperature Range40°C to +150°C	SG Micro Corp reserves the rig
	circuit design, or specifications with
	IN TO SEC
4.41	circuit design, or specifications with
THE W	7, 2, 2, 2, 2, 2
* 12 12	130
一 国门 注	139
四部队中山沿	
少程的"对外巴"	
102	
N.	

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN DESC	RIPTION	com
PIN	NAME	FUNCTION
1	OUT	Regulator Output Pin. It is recommended to use a ceramic capacitor with effective capacitance in the range of $1\mu F$ to $100\mu F$ to ensure stability. This ceramic capacitor should be placed as close as possible to OUT pin.
2	NC	No Connection.
3	GND	Ground.
4	TE IN	Input Supply Voltage Pin. It is recommended to use a 2.2µF or larger ceramic capacitor from IN pin to ground to get good power supply decoupling. This ceramic capacitor should be placed as close as possible to IN pin.
5	EN	Enable Pin. Drive EN high to turn on the regulator. Drive EN low to turn off the regulator.
6	PG	Power-Good Indicator Output Pin. An open-drain, active-high output that indicates the status of V_{OUT} . When the output voltage reaches $V_{\text{PG(TH,RISING)}}$ of the target, the PG pin goes into a high-impedance state.
7	PGDL	Power-Good Delay Pin. Keep this pin floating when it is not in use.
	NC	No Connection (Fixed Version Only).
8	FB	Feedback Voltage Input Pin (adjustable voltage version only). Connect this pin to the midpoint of an external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin.
Exposed Pad	GND	Exposed Pad. Connect it to GND internally. Connect it to a large ground plane to maximize thermal performance. This pad is not an electrical connection point.

FUNCTIONAL BLOCK DIAGRAMS

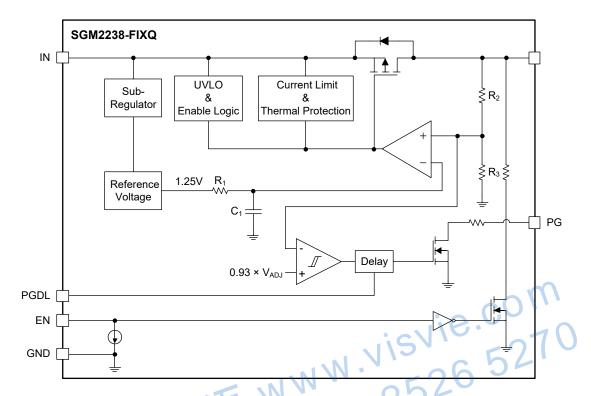


Figure 2. Block Diagram of Fixed Output Version

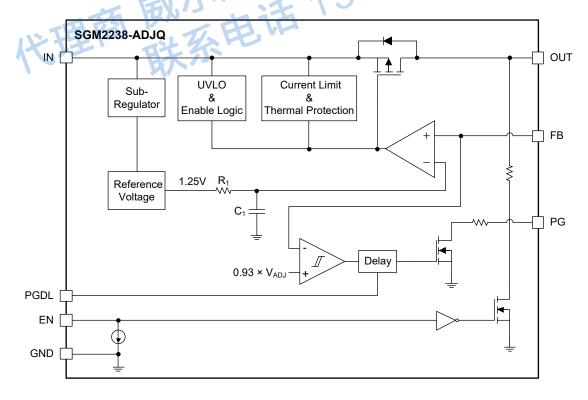


Figure 3. Block Diagram of Adjustable Output Version

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = (V_{OUT(NOM)} + 1.5V)$ or 3V(whichever is greater), $C_{IN} = 2.2\mu F$, $C_{OUT} = 2.2\mu F$, $T_J = -40^{\circ}C$ to $+125^{\circ}C$ (1), typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITION		MIN	TYP	MAX	UNITS
Input Voltage Range	V _{IN}			3		40	V
		$V_{IN} = (V_{OUT(NOM)} + 1.5V)$ to 40V,	T _J = +25°C	TBD		TBD	
Output Voltage Accuracy	V _{OUT}	I _{OUT} = 1mA	T _J = -40°C to +125°C	TBD		TBD	%
		$V_{IN} = (V_{OUT(NOM)} + 1.5V)$ to 40V,	T _{.1} = +25°C				V
Feedback Voltage	V_{ADJ}	I _{OUT} = 1mA	T _J = -40°C to +125°C	TBD	1.25	TBD	
FB Pin Input Current	I _{ADJ}		10 10 11 120		0.2		nA
Under-Voltage Lockout	V _{UVLO}	V _{IN} rising			2.06		V
Line Regulation	V _{LNR}	$V_{IN} = (V_{OUT(NOM)} + 1.5V)$ to 40V, I_{OU}	_T = 1mA		0.04		mV
Load Regulation	V_{LDR}	I _{OUT} = 1mA to 300mA			0.45		mV
-		$V_{OUT} = 95\% \times V_{OUT(NOM)}$	I _{OUT} = 150mA		200		<u> </u>
Dropout Voltage	V_{DROP}	V _{OUT(NOM)} = 5V	I _{OUT} = 300mA		410		mV
Output Current Limit	I _{LIMIT}	$V_{IN} = V_{OUT(NOM)} + 3V$, $V_{OUT} = 90\% \times$	V _{OUT(NOM)}		1.03		Α
Output Short-Circuit Current	I _{SHORT}	$V_{IN} = V_{OUT(NOM)} + 3V, V_{OUT} = 0V$			430		mA
		I _{OUT} = 0mA			3.3		
Occupation of Discourant		I _{OUT} = 1mA			6.3		
Ground Pin Current	I _{GND}	I _{OUT} = 30mA	ie		38		μA
		I _{OUT} = 300mA	ichlo		112		
Shutdown Supply Current	I _{SHDN}	V _{EN} = 0V, V _{IN} = 3V to 40V					μΑ
EN Pin High-level Input Voltage	V _{IH}	V _{IN} = 3V to 40V, T _J = +25°C	1.5		40	V	
EN Pin Low-level Input Voltage	V _{IL}	V _{IN} = 3V to 40V, T _J = +25°C	0		0.3	V	
	+	V _{EN} = 0V, V _{IN} = 40V		0.7			
EN Pin Input Current		V _{EN} = 40V, V _{IN} = 40V		73		nA	
Output Discharge Resistance	R _{DIS}	V _{EN} = 0V	V _{EN} = 0V				Ω
Turn-On Time	t _{ON}	From assertion of V _{EN} to V _{OUT} = 90		1.1		ms	
PG High Threshold	PG _{HTH}	V _{OUT} rising		93		%V _{ADJ}	
PG Low Threshold	PG _{LTH}	V _{OUT} falling		87		%V _{ADJ}	
PG Trip Hysteresis	PG _{HYS}				6		%V _{ADJ}
PG Pin Low-Level Output Voltage	$V_{PG(LO)}$	I _{SINK} = 1mA			0.1		V
PG Pin Leakage Current	I _{PG(LKG)}	$V_{PG} = 5V$			0.3		nA
PGDL Charging Current	I _{DLY}	V _{PGDL} = 1V			5.3		μΑ
PGDL Rising Threshold	V_{HDLY}	I _{OUT} = 1mA			1.5		V
PGDL Falling Threshold	V_{LDLY}	I _{OUT} = 1mA			0.34		V
PG Delay Time	t _{PGD}	C_{PGDL} = 47nF, the time from V_{OUT}	C_{PGDL} = 47nF, the time from $V_{OUT} \times 93\%$ to $V_{PGDL} \times 90\%$				ms
PG Reaction Time	t _{PGR}	C_{PGDL} = 47nF, the time from V_{OUT}	< 87% to V _{PGDL} × 10%		0.69		μs
		V - 0.5V V - 5V	f = 100Hz		70		<u></u>
	PSRR	$V_{IN} = 6.5V$, $V_{OUT} = 5V$, $C_{OUT} = 10\mu F$, $I_{OUT} = 10mA$ $V_{IN} = 13.5V$, $V_{OUT} = 5V$, $C_{OUT} = 10\mu F$, $I_{OUT} = 10mA$	f = 1kHz		48		dB
Power Supply Rejection Ratio			f = 100kHz		47		
			f = 100Hz		72		
			f = 1kHz	53			dB
		·	f = 100kHz		54		
Thermal Shutdown Temperature	T _{SHDN}	T _{SHDN}			175		°C
Thermal Shutdown Hysteresis	ΔT_{SHDN}				40		°C

NOTE:

1. Tested under pulse load conditions, so $T_J \approx T_A$.

APPLICATION INFORMATION

The SGM2238xQ is a high voltage, low quiescent current and low dropout LDO and provides 300mA output current. These features make the device a reliable solution to solve many challenging problems in the generation of clean and accurate power supply. The high performance also makes the SGM2238xQ useful in a variety of applications. The SGM2238xQ provides protection functions for output overload, output short-circuit condition and overheating.

Input Capacitor Selection (C_{IN})

The input decoupling capacitor should be placed as close as possible to the IN pin to ensure the device stability. $2.2\mu F$ or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings. For C_{OUT} with larger capacitance, it is recommended to choose the larger capacitance C_{IN} .

Output Capacitor Selection (Cout)

The output capacitor should be placed as close as possible to the OUT pin. 2.2µF or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of C_{OUT} that SGM2238xQ can remain stable is 1µF. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of C_{OUT} must be considered in design. Additionally, C_{OUT} with larger capacitance and lower ESR will help increase the high frequency PSRR and improve the load transient response.

Adjustable Regulator

The output voltage of the SGM2238-ADJQ can be adjusted from 1.25V to 24V. The FB pin will be connected to two external resistors as shown in Figure 4. The output voltage is determined by the following equation:

$$V_{OUT} = V_{ADJ} \times \left(1 + \frac{R_1}{R_2}\right) \tag{1}$$

where:

 V_{OUT} is output voltage and V_{ADJ} is the internal voltage reference, V_{ADJ} = 1.25V. R_1 and R_2 can be calculated for any output voltage range using equation 1. Choose R_2 = 1M Ω to maintain a 1.25µA minimum load.

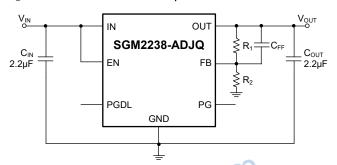


Figure 4. Adjustable Output Voltage Application

Enable Operation

The SGM2238xQ uses the EN pin to enable/disable the device and to deactivate/activate the output automatic discharge function.

When the EN pin voltage is lower than 0.3V, the device is in shutdown state. There is no current flowing from IN to OUT pins. In this state, the automatic discharge transistor is active to discharge the output voltage through a 220Ω (TYP) resistor and the PG output is pulled down.

When the EN pin voltage is higher than 1.5V, the device is in active state. The output voltage is regulated to the expected value and the automatic discharge transistor is turned off.

Under-Voltage Lockout (UVLO)

The UVLO circuit monitors the input voltage to prevent the device from turning on before V_{IN} rises above the V_{UVLO} threshold. The UVLO circuit responds quickly to glitches on the IN pin and attempts to disable the output of the device if any of these rails collapses. The local input capacitance prevents severe brownouts in most applications.

APPLICATION INFORMATION (continued)

Power-Good Function

The SGM2238xQ features PG function for monitoring the feedback voltage, so as to reflect the state of the output voltage. When the output voltage is lower than PG_{LTH}, the PG pin open-drain engages and pulls the PG pin close to GND. When the output voltage is higher than PG_{HTH}, the PG pin is indicated as high impedance. Connecting the PG pin to an external power supply via a pull-up resistor enables any downstream device to receive a power-good valid logic signal for sequencing. The resistance of the pull-up resistor is recommended to be $100k\Omega.$

The PG output is pulled down when the SGM2238xQ is in one of the following states, including disabled, thermal shutdown and UVLO.

Reverse Current Protection

The PMOS power transistor has an inherent body diode. This body diode will be forward biased when $V_{\text{OUT}} > V_{\text{IN}}$. When $V_{\text{OUT}} > V_{\text{IN}}$, the reverse current flowing from the OUT pin to the IN pin will damage the SGM2238xQ. If $V_{\text{OUT}} > V_{\text{IN}}$ event would happen in system, one external Schottky diode will be added between OUT pin and IN pin in circuit design to protect the SGM2238xQ.

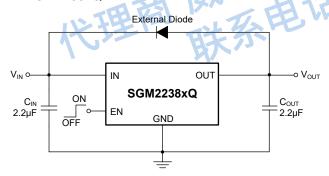


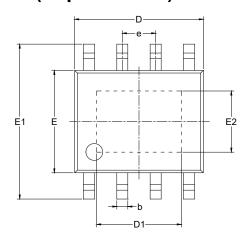
Figure 5. Reverse Protection Reference Design

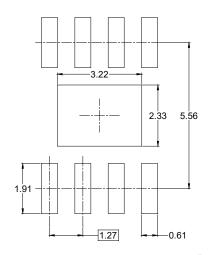
Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 1.03A (TYP). When the OUT pin is shorted to ground, the short-circuit protection will limit the output current to 430mA (TYP).

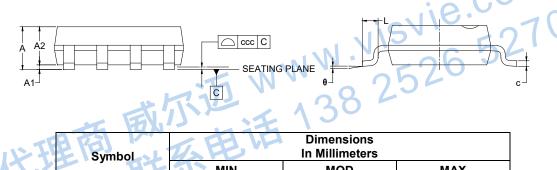
Thermal Shutdown

When the die temperature exceeds the threshold value of thermal shutdown, the SGM2238xQ will be in shutdown state and it will remain in this state until the die temperature decreases to +135°C. When the device enters thermal shutdown, the PG output is pulled low.


Power Dissipation (P_D)

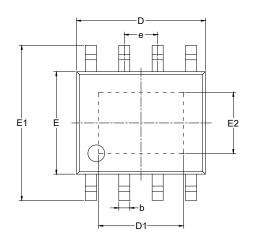

Power dissipation (P_D) of the SGM2238xQ can be calculated by the equation P_D = (V_{IN} - V_{OUT}) × I_{OUT} . The maximum allowable power dissipation ($P_{D(MAX)}$) of the SGM2238xQ is affected by many factors, including the difference between junction temperature and ambient temperature ($T_{J(MAX)}$ - T_A), package thermal resistance from the junction to the ambient environment (θ_{JA}), the rate of ambient airflow and PCB layout. $P_{D(MAX)}$ can be approximated by the following equation:

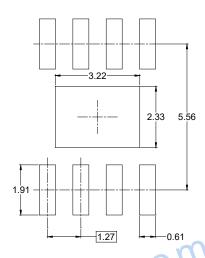
$$P_{D(MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$$
 (2)

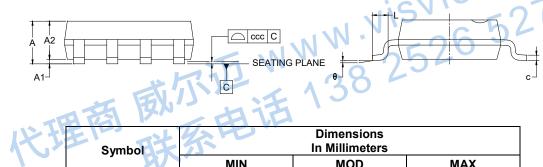

PACKAGE OUTLINE DIMENSIONS

SOIC-8 (Exposed Pad)

RECOMMENDED LAND PATTERN (Unit: mm)

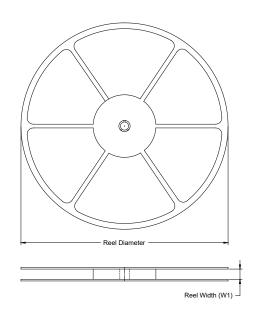

Symbol	瓜电阳					
日末	MIN	MOD	MAX			
Α			1.700			
A1	0.000	-	0.150			
A2	1.250	-	1.650			
b	0.330	-	0.510			
С	0.170	-	0.250			
D	4.700	-	5.100			
D1	3.020	-	3.420			
E	3.800	-	4.000			
E1	5.800	-	6.200			
E2	2.130	-	2.530			
е		1.27 BSC				
L	0.400	-	1.270			
θ	0°	-	8°			
ccc		0.100				


- This drawing is subject to change without notice.
 The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MS-012.

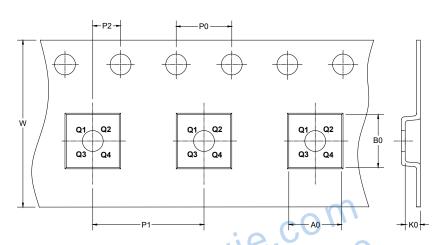

PACKAGE OUTLINE DIMENSIONS

SOIC-8 (Exposed Pad)

RECOMMENDED LAND PATTERN (Unit: mm)


41/41						
Symbol	然地	Dimensions In Millimeters				
, AV	MIN	MOD	MAX			
Α			1.700			
A1	0.000	-	0.150			
A2	1.250	-	1.650			
b	0.330	-	0.510			
С	0.170	-	0.250			
D	4.700	-	5.100			
D1	3.020	-	3.420			
Е	3.800	-	4.000			
E1	5.800	-	6.200			
E2	2.130	-	2.530			
е		1.27 BSC				
L	0.400	-	1.270			
θ	0°	-	8°			
ccc	0.100					

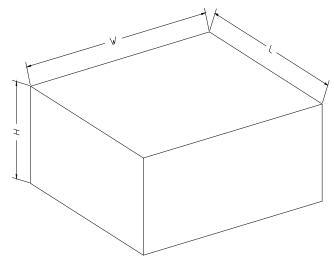
NOTES:


- This drawing is subject to change without notice.
 The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MS-012.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8 (Exposed Pad)	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

KEY PARAMETE	R LIST OF	CARTON B	ОХ	invie.com
Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton 52
13"	386	280	370	05 2 logs