

SGM5208-14/SGM5209-14 Low-Power, 14-Bit, 500kSPS, 8 Channels and 4 Channels Unipolar Inputs Analog-to-Digital Converters

GENERAL DESCRIPTION

The SGM5208-14 and SGM5209-14 are 14-bit, high-precision, multi-channel input, successive approximation (SAR) analog-to-digital converters (ADCs).

The SGM5208-14 supports 8 single-ended inputs. The SGM5209-14 supports 4 single-ended inputs. The SGM5208-14 and SGM5209-14 need to work with an external voltage reference. Its available range is 1.2V to 4.2V. The digital interface is compatible to the traditional SPI protocol.

The SGM5208-14 and SGM5209-14 are available in Green TQFN-4×4-24L and TSSOP-24 packages. It operates over an ambient temperature range -40°C to +125°C.

APPLICATIONS

Industrial Process Control Factory Automation Equipment Lab Instrumentations

FEATURES

- Supply Voltage Ranges:
- Analog Supply: 2.7V to 5.5V
- Digital I/O Supply: 2.7V to V_A + 0.2V
- Sampling Rate: Up to 500kSPS
- Excellent DC Performance
- Integral Nonlinearity (INL): ±2LSB (TYP), 6LSB (MAX) at 2.7V
- Differential Nonlinearity (DNL): ±0.7LSB (TYP), 3LSB (MAX) at 2.7V
- Excellent AC Performance at 5V, f_{IN} = 1kHz
 - Signal-to-Noise Ratio (SNR): 81.5dB (TYP)
- Spurious Free Dynamic Range (SFDR): 90.4dB (TYP)
- Total Harmonic Distortion (THD): -87.9dB (TYP)
- Flexible Input Multiplexer
- Support Daisy-Chain Connection
- SPI-Compatible Serial Interface
- Available in Green TQFN-4×4-24L and TSSOP-24 Packages

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
		40°C to ±125°C	SGM5208-14XTQF24G/TR		Tape and Reel, 3000
SCM5209 14	IQFN-4×4-24L	-40°C to +125°C	SGM5208-14XTQF24SG/TR	SGMS00Z XTQF24 XXXXX	Tape and Reel, 500
SGM5208-14 — Т		P-24 -40°C to +125°C	SGM5208-14XTS24G/TR	SGM520814 XTS24 XXXXX	Tape and Reel, 4000
	1550P-24		SGM5208-14XTS24SG/TR	SGM520814 XTS24 XXXXX	Tape and Reel, 500
TQFN-4×4-24L SGM5209-14 TSSOP-24		10°C to 1425°C	SGM5209-14XTQF24G/TR	SGMGJS XTQF24 XXXXX	Tape and Reel, 3000
	IQFN-4×4-24L	IQFN-4×4-24L -40°C to +125°C -	SGM5209-14XTQF24SG/TR	SGMGJS XTQF24 XXXXX	Tape and Reel, 500
		-40°C to +125°C	SGM5209-14XTS24G/TR	SGM520914 XTS24 XXXXX	Tape and Reel, 4000
	1550P-24		SGM5209-14XTS24SG/TR	SGM520914 XTS24 XXXXX	Tape and Reel, 500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXXX

— Vendor Code
— Trace Code

Trace Code
Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Voltage Range (with Respect to AGND))
IN _X , MUXOUT, ADCIN, REFP	0.3V to VA + 0.3V
COM, REFN	0.3V to 0.3V
VA	0.3V to 6.5V
Voltage Range (with Respect to DGND))
VBD	0.3V to 6.5V
AGND	0.3V to 0.3V
Digital Input Voltage	0.3V to VBD + 0.3V
Digital Output Voltage	0.3V to VBD + 0.3V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	4000V
CDM	

RECOMMENDED OPERATING CONDITIONS

Analog Supply Voltage Range, VA

Digital Supply Voltage Range, V	BD
	2.7V to V _A + 0.2V, 3V (TYP)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

TSSOP-24

PIN DESCRIPTION

PIN TYPE ⁽¹⁾ NAME **FUNCTION** TQFN-TSSOP-24 4×4-24L 1-7, 24 1-4, 21-24 IN0 to IN7 L Channel 0 to Channel 7 Inputs to MUX (Multiplexer). 4-7 1-4 NC No Connection. (SGM5209-14 only) External Reset Pin. Active low. 8 5 nRESET Т Status Output Pin. Used as end-of-conversion (nEOC) pin: active low (default) while a conversion is in progress. The nEOC polarity is programmable. nEOC/ Used as an interrupt (nINT) pin: active low (default) after the 9 6 nINT/ 0/0/I end-of-conversion and returns high after FS/nCS goes low. The nINT polarity CDI is programmable. Used as a chain data input (CDI) pin: when it is operated in daisy-chain mode. 7 SCLK 10 L SPI Serial Clock Input. Frame Synchronization Signal for Host Controller or Chip Select Input for 11 8 FS/nCS L SPI. 12 9 SDI L SPI Serial Data Input. SPI Serial Data Output. 13 10 SDO 0 14 11 DGND Digital Ground. 15 12 nCONVST Conversion Start Pin. Freeze sample and hold, start conversion. Т 16 13 VBD Digital Power Supply. 17 14 VA Analog Power Supply. _ 18 15 REFP External Positive Reference Input. Т 19 16 REFN _ External Negative Reference Input. Analog Ground. 20 17 AGND 21 18 ADCIN Т ADC Input. 19 MUXOUT 0 Mux Output. 22 23 20 COM L Common ADC Input. Connect it to AGND usually. ___ Exposed Pad EP Exposed pad. Connect it to analog ground.

NOTE: 1. I = Input, O = Output.

SGM5208-14/SGM5209-14 (TOP VIEW)

TQFN-4×4-24L

ELECTRICAL CHARACTERISTICS

(V_A = 2.7V, V_{BD} = 2.7V, V_{REF} = 2.5V, and f_{SAMPLE} = 500kSPS, T_A = -40°C to +125°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Analog Input		•			•		
Full-Scale Input Voltage (1)		IN _X - COM, ADCIN - COM	0		V _{REF}	V	
		IN _x , ADCIN	AGND - 0.2		V _A + 0.2		
Absolute Input Voltage		СОМ	AGND - 0.2		AGND + 0.2	V	
Input Capacitance		ADCIN		40		pF	
Input Leakage Current		Unselected ADC input	-1		1	μA	
System Performance							
Resolution				14		Bits	
Integral Nonlinearity	INL		-6	±2	6	LSB (2)	
Differential Nonlinearity	DNL			±0.7	3	LSB (2)	
Offset Error (3)	Eo		-3.5	±0.2	3.5	mV	
Offset Error Drift				2		PPM/°C	
Offset Error Matching				±0.2		mV	
Gain Error	E _G			-0.08		%FSR	
Gain Error Drift				±0.18		PPM/°C	
Gain Error Matching				0.003		%FSR	
Transition Noise				65		μV_{RMS}	
Power Supply Rejection Ratio	PSRR			70		dB	
Sampling Dynamics							
Conversion Time	t _{CONV}			18		CCLK	
Acquisition Time	t _{SAMPLE1}	Manual-trigger mode	3				
Acquisition nime	t _{SAMPLE2}	Auto-trigger mode		3		CCLK	
Throughput Rate					500	kSPS	
Dynamic Characteristics		-					
Total Harmonia Distortion ⁽⁴⁾	TUD	$V_{IN} = 2.5 V_{PP}$ at 1kHz		-86.7	-73.3	dD	
Total Harmonic Distortion	עחו	$V_{IN} = 2.5 V_{PP}$ at 10kHz		-85.9	-72.7	uБ	
Signal to Naisa Datio	CND	V _{IN} = 2.5V _{PP} at 1kHz	73.3	81.1		dD	
Signal-to-Noise Ratio	SINK	$V_{IN} = 2.5 V_{PP}$ at 10kHz	74.1	80.6		UD	
Signal to Naisa + Distortion		$V_{IN} = 2.5V_{PP}$ at 1kHz	71.3	80.0		dD	
Signal-to-Noise + Distortion	SINAD	$V_{IN} = 2.5 V_{PP}$ at 10kHz	71.9	79.4		uБ	
Spurious-Free Dynamic		$V_{IN} = 2.5V_{PP}$ at 1kHz	72	89.1		dD	
Range	SFDR	V_{IN} = 2.5 V_{PP} at 10kHz	71.1	89.1		dB	
Crosstell		V_{IN} = 2.5 V_{PP} at 1kHz		120		dD	
CIUSSIAIN		V _{IN} = 2.5V _{PP} at 100kHz		106		uD	
2dB Small Signal Dandwidth		IN _x - COM with MUXOUT tied to ADCIN		17			
-30B Small-Signal Bandwidth		ADCIN - COM		30		MHZ	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_A = 2.7V, V_{BD} = 2.7V, V_{REF} = 2.5V)$, and $f_{SAMPLE} = 500kSPS$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.)

PAR	PARAMETER SYMBOL		CONDITIONS		ТҮР	MAX	UNITS
Clock			•		•	•	
Internal Con Frequency ⁽⁷	version Clock			8.6	10.6	12.6	MHz
	(8)		Used as I/O clock only			21	MHz
SCLK Exterr	al Serial Clock ^(*)		Used as both I/O clock and conversion clock	0.5		21	MHz
External Vo	tage Reference Ir	put	•				
Input Deference	(REFP) - (REFN)	V		1.2		2.525	N/
Reference Range ⁽⁵⁾	(REFN) - AGND	VREF		-0.1		0.1	v
Resistance (6	6)		Reference input		50		kΩ
Digital Input	t/Output						
Logic Family					CMOS		
High-Level Ir	nput Voltage	V _{IH}	2.7V < V _{BD} < V _A	$0.8 \times V_{BD}$		V _{BD} + 0.3	V
Low-Level In	put Voltage	VIL	2.7V < V _{BD} < V _A	-0.3		0.1 × V _{BD}	V
Input Curren	t	I _I	$V_{IN} = V_{BD}$ or DGND	-1		1	μA
Input Capaci	tance	Cı			3		pF
High-Level C	output Voltage	V _{OH}	$V_A \ge V_{BD} \ge 2.7V$, $I_O = 1mA$	V _{BD} - 0.4		V _{BD}	V
Low-Level O	utput Voltage	V _{OL}	$V_A \ge V_{BD} \ge 2.7V$, $I_O = -1mA$	0		0.4	V
SDO Pin Ca	pacitance	Co	3-state high impedance state		3		pF
Load Capaci	tance	CL				20	pF
Data Format					Straight binary		
Power Supp	ly Requirements						
Analog Supp	ly Voltage ⁽⁵⁾	V _A		2.7		3.6	V
Digital I/O Su	upply Voltage	V_{BD}		2.7		V _A + 0.2	V
			f _{SAMPLE} = 500kSPS		5.5	8.1	m۸
Analog Supp	du Current		f _{SAMPLE} = 250kSPS in Auto-Nap mode		4.4	6.8	ШA
Analog Supp	Analog Supply Current	IA	Nap mode, SCLK = V_{BD} or DGND		2.4	4	mA
		Deep PD mode, SCLK = V_{BD} or DGND		20	48	μA	
			f _{SAMPLE} = 500kSPS		0.8	2.1	m۸
Digital I/O St	apply Current	IBD	f _{SAMPLE} = 250kSPS in Auto-Nap mode		0.6	1.7	ШA
			$V_A = 2.7V$, $V_{BD} = 2.7V$, $f_{SAMPLE} = 500kSPS$		17	27.6	
Power Dissipation			V_A = 2.7V, V_{BD} = 2.7V, f_{SAMPLE} = 250kSPS in Auto-Nap mode		13.5		mW

NOTES:

1. Ideal input range, do not consider gain error or offset error.

2. LSB = Least Significant Bit.

3. The measurement is performed relative to an ideal full-scale input (IN_X - COM) of 2.5V at V_A = 2.7V.

4. Accumulate the first nine harmonics of the input frequency.

5. The chip operates with V_A from 2.7V to 5.5V and V_{REF} from 1.2V to V_A (maximum V_{REF} \leq 4.2V). However, when V_A is between 3.6V and 4.5V, the chip may not meet the specifications shown in the Electrical Characteristics table.

6. Vary ±30%.

7. Sampling rate is up to 500kSPS in auto-trigger mode, while the internal conversion clock frequency is 10.5MHz.

8. Guaranteed by design and laboratory test, not tested in production.

ELECTRICAL CHARACTERISTICS (continued)

(V_A = 5V, V_{BD} = 2.7V to 5V, V_{REF} = 4.096V, and f_{SAMPLE} = 500kSPS, T_A = -40°C to +125°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Analog Input							
Full-Scale Input Voltage (1)		IN _X - COM, ADCIN - COM	0		V _{REF}	V	
		IN _X , ADCIN	AGND - 0.2		V _A + 0.2		
Absolute input voltage		СОМ	AGND - 0.2		AGND + 0.2	v	
Input Capacitance		ADCIN		40		pF	
Input Leakage Current		Unselected ADC input	-1		1	μA	
System Performance							
Resolution				14		Bits	
Integral Nonlinearity	INL		-6	±2	6	LSB (2)	
Differential Nonlinearity	DNL			±0.7	2.5	LSB (2)	
Offset Error (3)	Eo		-4.3	±0.8	4.3	mV	
Offset Error Drift				±1		PPM/°C	
Offset Error Matching				±0.5		mV	
Gain Error	E _G			-0.08		%FSR	
Gain Error Drift				±0.18		PPM/°C	
Gain Error Matching				±0.005		%FSR	
Transition Noise				60		μV_{RMS}	
Power Supply Rejection Ratio	PSRR			73		dB	
Sampling Dynamics							
Conversion Time	t _{CONV}			18		CCLK	
Acquisition Time	t _{SAMPLE1}	Manual-trigger mode	3				
Acquisition nime	t _{SAMPLE2}	Auto-trigger mode		3		UULK	
Throughput Rate					500	kSPS	
Dynamic Characteristics							
Total Harmonia Distortion ⁽⁴⁾	TUD	V_{IN} = 4.096 V_{PP} at 1kHz		-87.9	-72.3	٩D	
	טחו	V_{IN} = 4.096 V_{PP} at 10kHz		-85.7	-72	uВ	
Signal to Noise Patio	SND	V _{IN} = 4.096V _{PP} at 1kHz	74.7	81.5		dD	
Signal-to-Noise Ratio	SINK	V_{IN} = 4.096 V_{PP} at 10kHz	74.6	81.8		uВ	
Signal to Naisa + Distortion		V_{IN} = 4.096 V_{PP} at 1kHz	71.8	80.5		dD	
Signal-to-Noise + Distortion	SINAD	V_{IN} = 4.096 V_{PP} at 10kHz	71.9	80.2		uВ	
Spurious-Free Dynamic	SEDD	V_{IN} = 4.096 V_{PP} at 1kHz	70.9	90.4		dD	
Range	SFDK	V_{IN} = 4.096 V_{PP} at 10kHz	70.6	89.1		uВ	
Crosstell		V_{IN} = 4.096 V_{PP} at 1kHz		120		dD	
		V _{IN} = 4.096V _{PP} at 100kHz		101		uD	
2dB Small Signal Bandwidth		$\ensuremath{IN_{X}}\xspace$ - COM with MUXOUT tied to ADCIN		22			
-30B Small-Signal Bandwidth		ADCIN - COM		40			

ELECTRICAL CHARACTERISTICS (continued)

(V_A = 5V, V_{BD} = 2.7V to 5V, V_{REF} = 4.096V, and f_{SAMPLE} = 500kSPS, T_A = -40°C to +125°C, unless otherwise noted.)

PAR	PARAMETER SYMBOL		CONDITIONS MIN		TYP	MAX	UNITS
Clock			•	•		•	
Internal Con Frequency ⁽⁷	version Clock			8.6	10.7	12.9	MHz
	(9)		Used as I/O clock only			25	
SCLK Exterr	nal Serial Clock ^(*)		Used as both I/O clock and conversion clock	0.5		21	MHz
External Vo	Itage Reference Ir	put					
Input Deference	(REFP) - (REFN)	V		1.2	4.096	4.2	V
Range ⁽⁵⁾	(REFN) - AGND	V REF		-0.1		0.1	v
Resistance ⁽	6)		Reference input		50		kΩ
Digital Inpu	t/Output						
Logic Family	,				CMOS		
High-Level Ir	nput Voltage	V _{IH}	2.7V < V _{BD} < V _A	$0.8 \times V_{BD}$		V _{BD} + 0.3	V
Low-Level In	iput Voltage	VIL	2.7V < V _{BD} < V _A	-0.3		$0.1 \times V_{BD}$	V
Input Curren	t	I,	V _{IN} = V _{BD} or DGND	-1		1	μA
Input Capaci	itance	Cı			3		pF
High-Level C	Output Voltage	V _{OH}	$V_A \ge V_{BD} \ge 2.7V$, $I_O = 1mA$	V _{BD} - 0.3		V _{BD}	V
Low-Level O	utput Voltage	V _{OL}	$V_A \ge V_{BD} \ge 2.7V$, $I_O = -1mA$	0		0.3	V
SDO Pin Ca	pacitance	Co	HIZ state		3		pF
Load Capaci	itance	CL				20	pF
Data Format					Straight binary		
Power Supp	bly Requirements						
Analog Supp	oly Voltage ⁽⁵⁾	V _A		4.5	5	5.5	V
Digital I/O Su	upply Voltage	V_{BD}		2.7		V _A + 0.2	V
			f _{SAMPLE} = 500kSPS		6.5	10	m۸
Analog Supp	ally Current		f _{SAMPLE} = 250kSPS in Auto-Nap mode		5.3	7.5	ma
Analog Supply Current	IA	Nap mode, SCLK = V _{BD} or DGND		2.6	4	mA	
		Deep PD mode, SCLK = V _{BD} or DGND		25.2	55	μA	
			f _{SAMPLE} = 500kSPS		1.5	3.9	m (
	upply Current	BD	f _{SAMPLE} = 250kSPS in Auto-Nap mode		1.2	2.9	ШA
			$V_A = 5V, V_{BD} = 5V, f_{SAMPLE} = 500kSPS$		21.6	37.6	
Power Dissipation			V_A = 5V, V_{BD} = 5 V, f_{SAMPLE} = 250kSPS in Auto-Nap mode		17.6		mW

NOTES:

1. Ideal input range, do not consider gain error or offset error.

2. LSB = Least Significant Bit.

3. The measurement is performed relative to an ideal full-scale input (IN_X - COM) of 4.096V at V_A = 5V.

4. Accumulate the first nine harmonics of the input frequency.

5. The chip operates with V_A from 2.7V to 5.5V and V_{REF} from 1.2V to V_A (maximum V_{REF} \leq 4.2V). However, when V_A is between 3.6V and 4.5V, the chip may not meet the specifications shown in the Electrical Characteristics table.

6. Vary ±30%.

7. Sampling rate is up to 500kSPS in auto-trigger mode, while the internal conversion clock frequency is 10.5MHz.

8. Guaranteed by design and laboratory test, not tested in production.

TIMING REQUIREMENTS

(V_A = V_{BD} = 2.7V, T_A = -40^{\circ}C to +125°C, unless otherwise noted.) $^{(1)\,(2)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
	f	External, f _{CCLK} = 1/2 f _{SCLK}	0.5		10.5	MHz	
Frequency, Conversion Clock, CCLK	CCLK	Internal	8.6	10.6	12.6	MHZ	
Pulse Duration, nCONVST Low	t ₁		40			ns	
nCS Hold Time with Respect to nEOC ⁽³⁾	t ₂	Read while sampling	25			ns	
Setup Time, Rising Edge of nCS to EOS	t ₃	Read while sampling	25			ns	
		I/O clock only	40				
		I/O and conversion clocks	47.6		1000		
Cycle Time, SCLK	t ₄	I/O clock, daisy-chain mode	40			ns	
		I/O and conversion clocks, daisy-chain mode	47.6		1000		
Delay Time, Falling Edge of nCS to SDO Valid, SDO MSB Output	t ₅	C _{LOAD} = 10pF			35	ns	
Delay Time, Falling Edge of SCLK to SDO Invalid	t ₆	C _{LOAD} = 10pF	8			ns	
Delay Time, Falling Edge of SCLK to SDO Valid	t ₇	C _{LOAD} = 10pF			35	ns	
Delay Time, Rising Edge of nCS to SDO 3-State	t ₈	C _{LOAD} = 10pF			15	ns	
Setup Time, SDI to Falling Edge of SCLK	t ₉		8			ns	
Hold Time, SDI to Falling Edge of SCLK	t ₁₀		8			ns	
nCS Hold Time with Respect to EOS	t ₁₁	Read while converting	25			ns	
Setup Time, Rising Edge of nCS to nEOC ⁽³⁾	t ₁₂	Read while converting	1			CCLK	
Setup Time, Falling Edge of nCS to First Falling Edge of SCLK	t ₁₃		14			ns	
Pulse Duration, SCLK Low	t ₁₄		17		t_{SCLK} - t_{WH2}	ns	
Pulse Duration, SCLK High	t ₁₅		12		t_{SCLK} - t_{WL2}	ns	
Hold Time, Last Falling Edge of SCLK before Rising Edge of nCS	t ₁₆		2			ns	
Setup Time, Last Falling Edge of SCLK before Rising Edge of nCS	t ₁₇		15			ns	
Delay Time, Falling Edge of nCS to Deactivation of nINT	t ₁₈	C _{LOAD} = 10pF			40	ns	
Setup Time, Rising Edge of SCLK to Rising Edge of nCS	t ₁₉ ⁽⁴⁾		10			ns	
Hold Time, Rising Edge of SCLK to Rising Edge of nCS	$t_{20}^{(4)}$		2			ns	

NOTES:

1. All input signals are specified with rising up time which is 1.5ns and falling down time which is 1.5ns (10% to 90% of V_{BD}), and timed from a voltage level of ($V_{IL} + V_{IH}$)/2.

2. Refer to the timing diagrams.

3. The EOS is the end of sampling. The nEOC is the end of conversion. They are the inverse of each other.

4. When sending 4-bit or 16-bit commands, this applies to the 5th or 17th rising SCLK.

TIMING REQUIREMENTS (continued)

(V_A = V_{BD} = 5V, T_A = -40°C to +125°C, unless otherwise noted.) (1) (2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Frequency Conversion Clock, CCLK	£	External, f _{CCLK} = 1/2 f _{SCLK}	0.5		10.5		
Frequency, Conversion Clock, CCLK	ICCLK	Internal	8.6	10.7	12.9	IVIHZ	
Pulse Duration, nCONVST Low	t ₁		40			ns	
nCS Hold Time with Respect to nEOC ⁽³⁾	t ₂	Read while sampling	20			ns	
Setup Time, Rising Edge of nCS to EOS	t ₃	Read while sampling	20			ns	
		I/O clock only	25				
		I/O and conversion clocks	47.6		1000		
Cycle Time, SCLK	t ₄	I/O clock, daisy-chain mode	25			ns	
		I/O and conversion clocks, daisy-chain mode	47.6		1000		
Delay Time, Falling Edge of nCS to SDO Valid, SDO MSB Output	t ₅	C _{LOAD} = 10pF			20	ns	
Delay Time, Falling Edge of SCLK to SDO Invalid	t ₆	C _{LOAD} = 10pF	5			ns	
Delay Time, Falling Edge of SCLK to SDO Valid	t ₇	C _{LOAD} = 10pF			20	ns	
Delay Time, Rising Edge of nCS to SDO 3-State	t ₈	C _{LOAD} = 10pF			10	ns	
Setup Time, SDI to Falling Edge of SCLK	t ₉		8			ns	
Hold Time, SDI to Falling Edge of SCLK	t ₁₀		8			ns	
nCS Hold Time with Respect to EOS	t ₁₁	Read while converting	20			ns	
Setup Time, Rising Edge of nCS to nEOC ⁽³⁾	t ₁₂	Read while converting	1			CCLK	
Setup Time, Falling Edge of nCS to First Falling Edge of SCLK	t ₁₃		8			ns	
Pulse Duration, SCLK Low	t ₁₄		12		$t_{\rm SCLK}$ - $t_{\rm WH2}$	ns	
Pulse Duration, SCLK High	t ₁₅		11		$t_{\rm SCLK}$ - $t_{\rm WL2}$	ns	
Hold Time, Last Falling Edge of SCLK before Rising Edge of nCS	t ₁₆		2			ns	
Setup Time, Last Falling Edge of SCLK before Rising Edge of nCS	t ₁₇		10			ns	
Delay Time, Falling Edge of nCS to Deactivation of nINT	t ₁₈	C _{LOAD} = 10pF			20	ns	
Setup Time, Rising Edge of SCLK to Rising Edge of nCS	t ₁₉ ⁽⁴⁾		10			ns	
Hold Time, Rising Edge of SCLK to Rising Edge of nCS	t ₂₀ ⁽⁴⁾		2			ns	

NOTES:

1. All input signals are specified with rising up time which is 1.5ns and falling down time which is1.5ns (10% to 90% of V_{BD}), and timed from a voltage level of ($V_{IL} + V_{IH}$)/2.

2. Refer to the timing diagrams.

3. The EOS is the end of sampling. The nEOC is the end of conversion. They are the inverse of each other.

4. When sending 4-bit or 16-bit commands, this applies to the 5th or 17th rising SCLK.

TIMING DIAGRAMS

Figure 1. Read While Sampling (Manual-Trigger Mode)

Figure 2. Read While Converting (Auto-Trigger Mode at 500kSPS)

SGM5208-14Low-Power, 14-Bit, 500kSPS, 8 Channels and 4 ChannelsSGM5209-14Unipolar Inputs Analog-to-Digital Converters

TIMING DIAGRAMS (continued)

Figure 3. SPI I/O

Figure 4. nCS, nEOC, and nINT Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS: DC PERFORMANCE

 T_A = +25°C, V_{REF} (REFP - REFN) = 4.096V when V_A = V_{BD} = 5V or V_{REF} (REFP - REFN) = 2.5V when V_A = V_{BD} = 2.7V, f_{SCLK} = 21MHz, and f_{SAMPLE} = 500kSPS, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $T_A = +25$ °C, V_{REF} (REFP - REFN) = 4.096V when $V_A = V_{BD} = 5V$ or V_{REF} (REFP - REFN) = 2.5V when $V_A = V_{BD} = 2.7V$, $f_{SCLK} = 21MHz$, and $f_{SAMPLE} = 500kSPS$, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $T_{A} = +25^{\circ}C, V_{REF} (REFP - REFN) = 4.096V \text{ when } V_{A} = V_{BD} = 5V \text{ or } V_{REF} (REFP - REFN) = 2.5V \text{ when } V_{A} = V_{BD} = 2.7V, f_{SCLK} = 21MHz, and f_{SAMPLE} = 500kSPS, unless otherwise noted.$

TYPICAL PERFORMANCE CHARACTERISTICS: AC PERFORMANCE

 $T_{A} = +25^{\circ}C, V_{REF} (REFP - REFN) = 4.096V \text{ when } V_{A} = V_{BD} = 5V \text{ or } V_{REF} (REFP - REFN) = 2.5V \text{ when } V_{A} = V_{BD} = 2.7V, f_{SCLK} = 21MHz, and f_{SAMPLE} = 500kSPS, unless otherwise noted.$

Frequency (kHz)

Frequency Spectrum (8192 Point FFT, f_{IN} = 1.0376kHz, -0.2dB)

Frequency Spectrum (8192 Point FFT, f_{IN} = 10.37598kHz, -0.2dB)

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $T_A = +25^{\circ}$ C, V_{REF} (REFP - REFN) = 4.096V when $V_A = V_{BD} = 5$ V or V_{REF} (REFP - REFN) = 2.5V when $V_A = V_{BD} = 2.7$ V, $f_{SCLK} = 21$ MHz, and $f_{SAMPLE} = 500$ kSPS, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $T_A = +25^{\circ}$ C, V_{REF} (REFP - REFN) = 4.096V when $V_A = V_{BD} = 5$ V or V_{REF} (REFP - REFN) = 2.5V when $V_A = V_{BD} = 2.7$ V, $f_{SCLK} = 21$ MHz, and $f_{SAMPLE} = 500$ kSPS, unless otherwise noted.

SGM5208-14Low-Power, 14-Bit, 500kSPS, 8 Channels and 4 ChannelsSGM5209-14Unipolar Inputs Analog-to-Digital Converters

FUNCTIONAL BLOCK DIAGRAM

Figure 5. Block Diagram

DETAILED DESCRIPTION

Overview

The SGM5208-14 and SGM5209-14 are low-power, high-speed, successive approximation register (SAR) analog-to-digital converters (ADCs). They need to work with an external voltage reference.

The SGM5208-14 has 8 single-ended input channels, and the SGM5209-14 has 4 single-ended input channels. All inputs share the same common pin (COM pin).

The SGM5208-14 and SGM5209-14 can be driven by either an internal clock, or an external clock (SCLK).

The SGM5208-14 and SGM5209-14 have two working modes, manual channel select mode and auto channel select mode.

Signal Conditioning

For the input signal pre-conditioning, it is recommended to add an amplifier or a PGA (Programmable Gain Amplifier) between the MUXOUT pin and ADCIN pin.

Analog Input

The input signal applied to INx and COM must be limited to the range listed in the Electrical Characteristics table. The SGM5208-14 and SGM5209-14 are the capacitor array SAR ADCs. During the sampling period, there is an input current flowing into the ADC. The peak input current depends on the sampling rate, reference voltage, input voltage and signal source impedance.

A driver amplifier is usually recommended to buffer the signal source. It makes the analog input source to charge the equivalent input capacitor (48pF) to a 14-bit accuracy level in the acquisition time (240ns). When the input capacitor is fully charged, no further current flows. An equivalent input circuit is shown in Figure 6.

Driver Amplifier Choice

In a demo circuit, the SGM8968-1 is used for the source-follower (unity-gain) configuration, which is shown in Figure 7 with the recommended RC filter values. Low-bandwidth input signals with low-pass filters can be used to minimize noise.

NOTE: IN0 is assumed to be on, and IN7 is assumed to be off.

Figure 6. Equivalent Input Circuit

DETAILED DESCRIPTION (continued)

Device Functional Modes

Reference

The SGM5208-14 and SGM5209-14 must be operated with an external voltage reference. The available range is 1.2V to 4.2V. It is recommended to place a 10μ F decoupling capacitor between the reference output and the ADC REF input pin.

Converter Operation

The ADC conversion of SGM5208-14/SGM5209-14 is driven by the conversion clock (CCLK) source.

The CCLK source can be selected by software either from an internal oscillator or an external clock (SCLK).

When the CCLK is from the internal oscillator, its minimum frequency is 8.6MHz. The minimum sampling time is 3 CCLK cycles. The minimum conversion time is 18 CCLK cycles.

When the CCLK is from the external clock (SCLK), its maximum frequency is 21MHz. The frequency of SCLK is divided by a factor of two, because the CCLK is toggled on

the rising edge of SCLK. In manual-trigger mode, the start of a conversion is triggered by a specific rising edge of SCLK. It will take a minimum 20ns to set up between the falling edge of nCONVST and the rising edge of SCLK. The minimum conversion time is 18 CCLK cycles.

When the SCLK is used to drive ADC conversion, it must meet the minimum high time and low time requirements. The SCLK must meet the minimum rise time, fall time and low jitter to get the best converter performance.

Manual Channel Select Mode

To enter the manual channel select mode, it needs to take two steps. The first step is to set the Configuration register (CFR) to enable the manual channel select mode. The second step is to set the target channel number by configuring the Command register (CMR). Figure 8 shows a demo of the channel switching timing sequence in manual channel select mode.

Figure 8. Manual Channel Select Mode Timing

DETAILED DESCRIPTION (continued)

Auto Channel Select Mode

If the chip is configured to work in auto channel select mode, the chip scans all channels in a fixed order and repeats the cycle. The first channel of the cycle scanning starts the channel in manual channel mode. For example, if in manual channel mode, channel 3 is the conversion channel, the auto scanning sequence is 3, 4, 5, 6, 7, 3, and so forth (for the SGM5209-14, the sequence is 3, 4, 3). Figure 9 shows a demo of the channel switching timing sequence in auto channel select mode. The chip quits the scanning cycle after CFR bit D[11] is cleared to 0.

Start of a Conversion

The input signal is sampled on the falling edge of nCONVST, and the pin should be kept low for minimum of 120ns. After the input signal is sampled, the conversion is started at the same time. The conversion time is 18 CCLK cycles. The minimum time between two nCONVST falling pulses is 21 CCLKs. The time between a conversion completed and a new falling edge of nCONVST is the acquisition time.

To allow multiple chips to sample simultaneously, the nCONVST pins of all chips can be controlled by one common

Table 1. Different Conversion Types

logic controller's output (please consider the driving ability of controller's output pin).

A conversion also can be triggered internally without an nCONVST signal. To let the chip work in auto-trigger mode, configure the CFR bit D[9] to 0. Under this auto-trigger mode, when a conversion is completed, it will take 3 more CCLK cycles (if the CFR bit D[8] is set to 0, see Table 4 and Table 5 for details), the next conversion is automatically triggered. Total acquisition time and conversion time are 21 CCLK cycles (if the CFR bit D[8] is set to 0, see Table 4 and Table 5 for details).

The different conversion modes are shown in Table 1.

Note that when the chip is configured to work with manual channel select and auto-trigger mode, it is usually used for a single channel conversion. If there is an input channel switching in this mode, the chip must be set to manual-trigger mode before an input MUX switching. After the channel switching is completed, the chip can be re-configured to work with manual channel select and auto-trigger mode.

Mode	Select Channel	Start Conversion
Automatic	Auto Channel Select ⁽¹⁾ : The chip scans the input channels automatically. There is no need to write channel number to CMR. More details refer to Auto Channel Select Mode section	Auto-Trigger Mode: Start a conversion with sequenced CCLK automatically
Manual	Manual Channel Select: Select the channel number by CMR command	Manual-Trigger Mode: Start a conversion with nCONVST

NOTE:

1. It is recommended that auto channel select mode should be worked with auto-trigger mode and TAG bit output enabled.

DETAILED DESCRIPTION (continued)

Status Output Pin (nEOC/nINT)

The function of the nEOC/nINT pin is software configurable. When the pin is used as nEOC output and its active polarity is set low, the pin will keep low throughout the conversion and go high if the conversion is completed. In manual-trigger mode, the pin goes low immediately once the nCONVST goes low, the pin will go high once the conversion is completed. In auto-trigger mode, after finishing the previous conversion, the pin goes high, and the pin will keep high for the first 3 CCLK cycles in the next conversion process frame.

If the pin of nEOC/nINT is configured as an interrupt output and active low, it goes low at the end of a conversion, and will go high by the next read cycle.

The function of the pin nEOC/nINT is set by CFR bit D[6]. The output polarity of the pin is set by CFR bit D[7].

Power-Down Modes

The chip has 3 power-down modes, including Nap, Deep, and Auto-Nap. They are all controlled by CFR according bits (refer to Table 5 for details).

Once the Nap power-down mode is enabled, the power consumption will reduce to around 2.6mA in 200ns. There are

several ways to call the chip to quit this power-down mode, disable this mode, issue a wake-up command, reset CFR to default value, or reset the chip (software or hardware, see Table 4 and Table 5 for further information). It will take the chip 3 CCLK cycles to wake up from Nap power-down mode.

If the Deep power-down mode is enabled, the chip will be shut down and the power consumption will drop to about 25.2μ A in 50ns. The wake-up time from this mode is about 150μ s. The methods of calling the chip to wake up are the same as waking from Nap power-down mode.

Once the Auto-Nap power-down mode is enabled, the chip will go to Nap power-down automatically after the next conversion is completed. The power consumption will reduce to around 2.6mA in 200ns. To call the chip to quit Auto-Nap power-down mode, besides the same method as the same as quitting Nap power-down mode, issuing a manual channel select command or starting a conversion also can call the chip to wake up. It will take the chip 3 CCLK cycles to wake up from Auto-Nap power-down mode.

Table 2 shows a comparison of the three power-down modes.

Power-Down Type	Power Consumption at V _A = 5V	Power-Down by	Power-Down Time	Wake-Up by	Wake-Up Time	Enable
Normal Operation	6.5mA	—	_	—	—	
Deep Power-Down	25.2µA	Setting CFR bit D[2]	50ns	Wake-up command 1011b	150µs	Set CFR bit D[2]
Nap Power-Down	2.6mA	Setting CFR bit D[3]	200ns	Wake-up command 1011b	3 CCLKs	Set CFR bit D[3]
Auto-Nap Power-Down	2.6mA	nEOC (end of conversion)	200ns	nCONVST, any channel select command, default command 1111b, or wake-up command 1011b	3 CCLKs	Set CFR bit D[4]

Table 2. Comparison of Power-Down Modes

DETAILED DESCRIPTION (continued)

Auto-Nap and Acquisition Time

Figure 10 shows the timing diagram for nCONVST, nEOC and Auto-Nap power-down signals in manual-trigger mode. The nCONVST signal triggers the chip to wake up. It will take at least 3 CCLK cycles (3 Conversion Clock Cycles) to wake up and 3 CCLK cycles to acquire input.

The SGM5208-14 and SGM5209-14 support two kinds of sampling rate 500kSPS and 250kSPS in auto-trigger mode. In 500kSPS sampling mode, it works in 21 CCLK cycles per conversion. In 250kSPS sampling mode, it works in 42 CCLK cycles per conversion.

The Nap power-down and Deep power-down are both available in 500kSPS and 250kSPS sampling modes. The

Auto-Nap power-down is only available in 250kSPS sampling mode, because there is no time for the core to power down in 500kSPS sampling rate.

Figure 11 shows a timing diagram for the conversion sequence in auto-trigger mode with Auto-Nap power-down signals in 250kSPS sampling rate. For 16-bit word output, two consecutive conversions are 42 CCLK cycles apart. Nap_IN (active high, the signal powers down the ADC core) goes low 6 CCLK cycles ahead of the falling edge of nCONVST_IN (internal signal, active low). Nap_IN calls up the ADC core. It takes 3 CCLK cycles are acquisition time. After the conversion is completed, the chip goes power-down automatically.

Figure 10. Timing Diagram for nCONVST, nEOC, and Auto-Nap Power-Down Signals in Manual-Trigger Mode (3 CCLKs for Acquisition)

DETAILED DESCRIPTION (continued)

Table 3 lists the total of the acquisition time and conversion time for the different combinations of triggers and power-down modes.

Table 3. Total Acquisition + Conversion Times

Mode	Acquisition + Conversion Time
Auto-Trigger at 500kSPS	= 21 CCLK
Manual-Trigger	≥ 21 CCLK
Manual-Trigger with Deep Power-Down	≥ 4 SCLK + 1µs + 3 CCLK + 18 CCLK + 16 SCLK + 150µs
Manual-Trigger with Nap Power-Down	≥ 4 SCLK + 3 CCLK + 3 CCLK + 18 CCLK + 16 SCLK + 200ns
Manual Trigger with Auto Nan Bower Down	≥ 4 SCLK + 3 CCLK + 3 CCLK + 18 CCLK + 1 CCLK + 200ns (using wake-up to resume)
Manual-Ingger with Auto-Nap Power-Down	≥ 3 CCLK + 3 CCLK + 18 CCLK + 1 CCLK + 200ns (using nCONVST to resume)

Figure 12 to Figure 14 show the different combinations of various trigger and power-down modes.

Figure 12. Read While Converting vs. Read While Sampling (Manual-Trigger Mode)

3. Command on SDI pin is minimum 16 SCLK cycles to set ADC into Nap or Deep power-down mode

Figure 13. Read While Converting vs. Read While Sampling with Nap or Deep Power-Down (Manual-Trigger Mode)

DETAILED DESCRIPTION (continued)

Manual-Trigger Case 2: Wake-Up Using WAKEUP Command

NOTES:

The time between the end of a conversion and Auto-Nap power-down is 1 CCLK cycle.
 Command on SDI pin is minimum 4 CCLK cycles.

Figure 14. Read While Converting vs. Read While Sampling with Auto-Nap Power-Down

DETAILED DESCRIPTION (continued)

Programming

Digital Interface

The SCLK operation frequency of the interface is up to 25MHz. Each operation frame is started on the falling edge of the FS/nCS. The data input and output are both read on the falling edge of SCLK. The first bit of the output data is the most significant bit (MSB).

One complete serial I/O operation frame starts with the falling edge of FS/nCS, and ends on the 16^{th} falling edge of SCLK. The interface works with the controller typical SPI setting CPOL = 1 (clock polarity) and CPHA = 0 (clock phase). This means that the falling edge of FS/nCS may happens when the SCLK is high. On the rising edge of the FS/nCS, it does not need to consider whether the SCLK is high or low, as long as there are enough SCLK falling edges before the rising edge of FS/nCS.

Internal Register

The internal register is composed of 4 bits of the Command register (CMR) and 12 bits of the Configuration register (CFR).

Writing to the Converter

The chip supports two types of writing to the registers, a 4-bit writing to CMR only and a 16-bit writing to CMR and CFR at the same time. More details refer to Table 4 and Table 5. When there is a 4-bit command, the command will take effect on the 4^{th} falling edge of SCLK. A 16-bit read or write command will be at least 16 SCLK cycles, and in some exceptional cases, it will need more than 16 SCLK cycles (more details refer to Table 7).

Configuring the Converter and Default Mode

A 4-bit command will take effect on the 4th falling edge of SCLK. A 16-bit command will take effect on the 16th falling edge of SCLK.

After a power-on reset, or software reset, or hardware reset, the CFR will be reset to the default value.

The SPI interface of SGM5208-14/SGM5209-14 is full duplex. For all commands, except read CFR, the ADC conversion result is output on the SDO pin.

D[15:12]	Hex	Command	D[11:0]	Wake-Up from Auto-Nap	Minimum SCLKs Required	Туре
0000b	0h	Select analog input channel 0	Don't care	Y	4	W
0001b	1h	Select analog input channel 1	Don't care	Y	4	W
0010b	2h	Select analog input channel 2	Don't care	Y	4	W
0011b	3h	Select analog input channel 3	Don't care	Y	4	W
0100b	4h	Select analog input channel 4 ⁽²⁾	Don't care	Y	4	W
0101b	5h	Select analog input channel 5 ⁽²⁾	Don't care	Y	4	W
0110b	6h	Select analog input channel 6 ⁽²⁾	Don't care	Y	4	W
0111b	7h	Select analog input channel 7 ⁽²⁾	Don't care	Y	4	W
1000b	8h	Reserved	Reserved	—	—	—
1001b	9h	Reserved	Reserved	—	—	—
1010b	Ah	Reserved	Reserved	—	—	—
1011b	Bh	Wake-up	Don't care	Y	4	W
1100b	Ch	Read CFR	Don't care	—	16	R
1101b	Dh	Read data	Don't care	—	16	R
1110b	Eh	Write CFR	CFR value		16	W
1111b	Fh	Default mode (load CFR with default value)	Don't care	Y	4	W

Table 4. Command Set Defined by Command Register (CMR)⁽¹⁾

NOTES:

1. After the falling edge of FS/nCS, the first four bits of SDO are the four MSBs from the previous conversion result. The next 12 bits of SDO are the contents of the CFR.

2. These commands are not available for SGM5209-14.

DETAILED DESCRIPTION (continued)

Reading the Configuration Register

The controller can read back the content of CFR by issuing the read command 1100b. The read-back data is composed of 4-bit (MSBs) previous ADC conversion result plus 12-bit CFR contents. When issuing a read CFR command, nCONVST is not used and regardless of the activity of nEOC/nINT pin.

Table 5. 12-Bit Configuration Register (CFR) Details

BITS	DESCRIPTION	COMMENT
D[11]	Channel Select Mode 0 = Manual channel select mode is enabled. Use CMR command to access a desired channel 1 = Auto channel select mode is enabled. Channels are scanned automatically until the cycle after this bit is cleared to '0'.	
D[10]	Conversion Clock (CCLK) Source Select 0 = Conversion clock (CCLK) = SCLK/2 1 = Conversion clock (CCLK) = internal OSC	
D[9]	Trigger (Conversion Start) Select: Start Conversion at the End of Sampling (EOS) 0 = Auto-trigger mode: conversions are automatically trigged three conversion clocks after EOC at 500kSPS 1 = Manual-trigger mode: conversions are manually trigged on the falling edge of nCONVST	When D[9] = 0 and D[8] = 0, D[4] bit setting is ignored.
D[8]	Sample Rate for Auto-Trigger Mode 0 = 500kSPS (21 CCLKs) 1 = 250kSPS (42 CCLKs)	
D[7]	Pin 10 Polarity Select when Used as an Output (nEOC/nINT) 0 = nEOC/nINT active high 1 = nEOC/nINT active low	
D[6]	Pin 10 Function Select when Used as an Output (nEOC/nINT) 0 = Pin 10 is used as nINT 1 = Pin 10 is used as nEOC	
D[5]	Pin 10 I/O Function Select for Daisy-Chain Mode Operation 0 = Pin 10 is used as CDI input (daisy-chain mode is enabled) 1 = Pin 10 is used as nEOC/nINT output	
D[4]	Auto-Nap Power-Down Enable or Disable 0 = Auto-Nap power-down mode is enabled (not activated) 1 = Auto-Nap power-down mode is disabled	When D[9] = 0 and D[8] = 0, D[4] bit setting is ignored.
D[3]	Nap Power-Down Enable or Disable 0 = Nap power-down is enabled 1 = Nap power-down is disabled (resume normal operation)	The bit is reset to 1 automatically by wake-up command.
D[2]	Deep Power-Down Enable or Disable 0 = Deep power-down is enabled 1 = Deep power-down is disabled (resume normal operation)	The bit is reset to 1 automatically by wake-up command.
D[1]	TAG Bit Output Enable 0 = TAG bit output is disabled 1 = TAG bit output is enabled. TAG bits are attached in tail position after conversion data	
D[0]	Software Reset 0 = System reset, returns to 1 automatically 1 = Normal operation	

NOTE:

1. Default = FFFh.

DETAILED DESCRIPTION (continued)

Reading the Conversion Result

The ADC conversion result is available when the nEOC goes high and it is presented to the output register on the next falling edge of FS/nCS. The host controller can shift out the data on SDO pin at any time except the restricted quiet zone. The quiet zone is defined as 20ns before and 20ns after the end of sampling time (EOS). The EOS is defined as the falling edge of nCONVST in manual-trigger mode. The EOS is defined as the end of 3rd CCLK after nEOC in auto-trigger mode.

The falling edge of FS/nCS should not be set at the moment of the rising edge of nEOC, otherwise the ADC result will be corrupted. If the falling edge of FS/nCS is ahead of the nEOC, the previous result is read out.

The ADC result is in 14-bit strait binary format, as shown in Table 6. In general, at least 14 SCLK cycles is used to read out, and in some exceptional cases, more than 14 SCLK cycles is needed, as shown in Table 7. The data is shifted out by MSB first. If there are more SCLK cycles, 3 TAG bits (if enabled) are attached at the trailing of the ADC data, the others are filled with all 0s.

When FS/nCS is low, SDO is active and goes to 3-state on the rising edge of FS/nCS.

Note that whenever SDO is in output state, the output number of data bits depends on the number of SCLK cycles. For example, if there are 4 SCLK cycles, the first MSBs of data will be shifted out. If any kind of resets happen during the output cycle, the SDO shifts all 1s immediately.

If SCLK is used for the CCLK, it is not possible to shift out the 14-bit ADC data during the sampling time (6 SCLKs) due to the presence of quiet zone. In this case, it is recommended to read the ADC result during the conversion time (36 SCLKs or 48 SCLKs in Auto-Nap mode).

TAG Mode

The SGM5208-14 and SGM5209-14 support TAG features, which is used to indicate ADC result is from which input channel. When the TAG is enabled, at least 19 SCLK cycles (14-bit data + 2-bit 0 + 3-bit TAG) are required to read out all data. The TAG bits are attached the trailing of ADC result. TAG bits are set to '000' for channel 0, '001' for channel 1, and so on. TAG bits are set to '111' for channel 7.

Table 6. Ideal Input Voltages and Output Codes

Description	Analog Value	Digital Output Straight Binary			
Description	Analog value	Binary Code	Hex Code		
Full-Scale Range	V _{REF}	—	—		
Least Significant Bit (LSB)	V _{REF} /16384	—	—		
Full-Scale	V _{REF} - 1LSB	11 1111 1111 1111	3FFF		
Midscale	V _{REF} /2	10 0000 0000 0000	2000		
Midscale - 1LSB	V _{REF} /2 - 1LSB	01 1111 1111 1111	1FFF		
Zero	0V	00 0000 0000 0000	0000		

DETAILED DESCRIPTION (continued)

Daisy-Chain Mode

The SGM5208-14 and SGM5209-14 support daisy-chain connection. The CFR bit D[5] can configure the nEOC/nINT pin as the chain data input (CDI) pin. CDI pin is used for a secondary serial data input from an upstream converter.

Figure 15 shows a typical connection of three converters in daisy-chain mode.

Figure 16 shows a timing diagram in a daisy connection, the data in CDI pin goes through the chip to SDO, the serial input passes through each chip with a 16 SCLK cycles delay (TAG is not enabled, see Table 7 for more details about TAG) as long as nCS is active. The 3 chips sample and convert simultaneously in Figure 16.

NOTE:

Device #1 CFR D[5] = 1, Device #2 and Device #3 CFR D[5] = 0.

Figure 15. Connect Multiple Converters in Daisy-Chain Mode

Figure 16. Timing Diagram in Daisy-Chain Mode with Shared nCONVST and Continuous nCS

DETAILED DESCRIPTION (continued)

Note that in the daisy-chain connection, the nCS must be hold low during the entirely data transferring period (in Figure 16, it is 24 SCLK cycles. Assuming TAG is not enabled, see Table 7 for more details about TAG).

If the nCS is toggled during the data transferring in a daisy-chain connection, the data stream cannot go through the daisy-chain, each SDO data always repeats the chip converter data in each nCS frame. An example of this case is shown in Figure 17.

For one chip, the number of SCLK cycles of each read frame is determined by the combination of different read modes.

There are different combination modes of daisy-chain mode, TAG mode, and the manner in which a channel is selected (such as auto channel select mode). Table 7 shows the required numbers of SCLKs for different readout modes.

In a daisy-chain connection, the maximum SCLK frequency may be affected by supply voltage and load when SCLK goes through the connection net of the chips. When the chips are configured in a daisy-chain mode, it is recommended to reduce the SCLK frequency.

Reset Function

There are 3 methods to reset the chip to default status, internal power-on reset (POR), software reset and hardware reset by nRESET pin.

The internal POR circuit will reset the chip to default mode when the chip is initially powered up. The software reset is issued by software command (CFR bit D[0] is set to 0). The software command will be automatically cleared to 1 after the chip is reset. The hardware reset is issued by holding the nRESET pin low at least 10ns. If the hardware reset function is not used, this pin must be tied to VBD.

If a reset function is performed, it will take the chip at least 150µs to be ready to work. During this time, any operation will be corrupted.

Figure 17. Timing Diagram in Daisy-Chain Mode with Shared nCONVST and Noncontinuous nCS

Table 7. Required SCLKs for Different Readout Mode Combinations

Daisy-Chain Mode CFR D[5]	TAG Mode CFR D[1]	Number of SCLK Cycles per SPI Read	Trailing Bits
1	0	14	None
1	1	≥ 19	TAG bits plus up to 5 zeros
0	0	16	None
0	1	24	TAG bits plus 5 zeros

APPLICATION INFORMATION

A Typical Connection of SGM5208-14/ SGM5209-14

A typical data acquisition circuit for the SGM5208-14/ SGM5209-14 is shown in Figure 18.

Power Supply Recommendations

The SGM5208-14 and SGM5209-14 have analog power supply V_{A} and digital interface power supply $V_{\text{BD}}.$ If the two

power supplies are not from a single voltage source, it is recommended to power on V_A firstly and then power on V_{BD} . The supply voltage V_{BD} should not be higher than the supply voltage V_A .

After the V_A and V_{BD} are powered on, it will take the chip at least 2ms to be ready to work. During this time, any operation will be corrupted.

Figure 18. Typical Circuit Configuration

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DECEMBER 2023 – REV.A to REV.A.1	Page
Updated Package/Ordering Information section	2
Changes from Original (JUNE 2023) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

TQFN-4×4-24L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters					
	MIN	MOD	MAX			
A	0.700	-	0.800			
A1	0.000	-	0.050			
A2	0.203 REF					
b	0.180	0.300				
D	3.900	3.900 -				
E	3.900	3.900 -				
D1	2.600	2.800				
E1	2.600 - 2.800					
е	0.500 BSC					
k	0.200 MIN					
L	0.300 - 0.500					
eee	0.080					

NOTE: This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS

TSSOP-24

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters						
	MIN	MOD	MAX				
A	-	-	1.200				
A1	0.050	-	0.150				
A2	0.800	-	1.050				
b	0.190	-	0.300				
С	0.090 -		0.200				
D	7.700 -		7.900				
E	4.300 -		4.500				
E1	6.200 -		6.600				
е	0.650 BSC						
L	0.450 -		0.750				
Н	0.250 TYP						
θ	0°	8°					
ccc	0.100						

NOTES:

1. This drawing is subject to change without notice.

2. The dimensions do not include mold flashes, protrusions or gate burrs.

3. Reference JEDEC MO-153.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-4×4-24L	13″	12.4	4.30	4.30	1.10	4.0	8.0	2.0	12.0	Q2
TSSOP-24	13″	16.4	6.80	8.30	1.60	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton]_
13″	386	280	370	5	00002

