TS5A23157

SCDS165F - MAY 2004 - REVISED JANUARY 2019

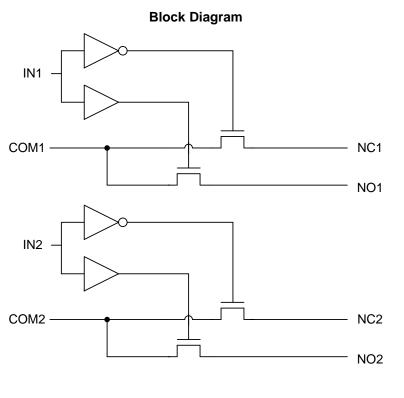
TS5A23157 Dual 10-Ω SPDT Analog Switch

1 Features

- Low ON-State Resistance (15 Ω at 125°C)
- 125°C Operation
- Control Inputs are 5-V Tolerant
- Specified Break-Before-Make Switching
- Low Charge Injection
- Excellent ON-Resistance Matching
- Low Total Harmonic Distortion
- 1.8-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Sample-and-Hold Circuits
- Battery-Powered Equipment
- Audio and Video Signal Routing
- Communication Circuits


3 Description

The TS5A23157 device is a dual single-pole doublethrow (SPDT) analog switch designed to operate from 1.65 V to 5.5 V. This device can handle both digital and analog signals. Signals up to 5.5 V (peak) can be transmitted in either direction.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
TS5A23157DGS	VSSOP (10)	3.00 mm × 3.00 mm		
TS5A23157RSE	UQFN (10)	2.00 mm × 1.50 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

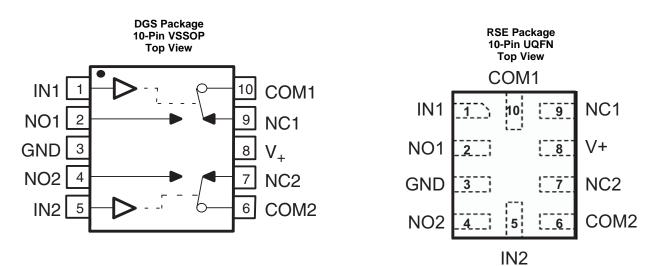
Table of Contents

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics for 5-V Supply 5
	6.6	Electrical Characteristics for 3.3-V Supply7
	6.7	Electrical Characteristics for 2.5-V Supply
	6.8	Electrical Characteristics for 1.8-V Supply9
	6.9	Typical Characteristics 10
7	Para	ameter Measurement Information 12
8	Deta	ailed Description 16
	8.1	Overview

	8.2	Functional Block Diagram	16
	8.3	Feature Description	16
	8.4	Device Functional Modes	16
9	Appl	ication and Implementation	17
	9.1	Application Information	17
	9.2	Typical Application	17
10	Pow	er Supply Recommendations	18
11	Layo	out	19
	11.1	Layout Guidelines	19
	11.2	Layout Example	19
12	Devi	ice and Documentation Support	20
	12.1	Device Support	
	12.2		
	12.3	Community Resources	21
	12.4	Trademarks	21
	12.5	Electrostatic Discharge Caution	21
	12.6	Glossary	21
13		hanical, Packaging, and Orderable	21

Page

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	nanges from Revision E (June 2015) to Revision F	Page
•	Changed <i>Feature</i> From: Low ON-State Resistance (10 Ω) To: Low ON-State Resistance (15 Ω at 125°C)	1
•	Added Feature : 125°C Operation	1
•	Added Junction Temperature To the Absolute Maximum Ratings table	4
•	Changed the Operating temperature MAX value From: 85°C To: 125°C in the <i>Recommended Operating Conditions</i> table	4
•	Changed the Thermal Information table	4
•	Changed ron in the Electrical Characteristics for 5-V Supply table	5
•	Changed V _{IH} in the Electrical Characteristics for 5-V Supply table	5
•	Changed ton and tore in the Electrical Characteristics for 5-V Supply table	5
•	Changed ron in the Electrical Characteristics for 3.3-V Supply table	7
•	Changed ton and tore in the Electrical Characteristics for 3.3-V Supply table	7
•	Changed ron in the Electrical Characteristics for 2.5-V Supply table	8
•	Changed ton and tore in the Electrical Characteristics for 2.5-V Supply table	8
•	Changed ron in the Electrical Characteristics for 1.8-V Supply table	9
•	Changed ton and tore in the Electrical Characteristics for 1.8-V Supply table	9

Changes from Revision D (October 2013) to Revision E

•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
	Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
	and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

5 Pin Configuration and Functions

Pin Functions

	PIN		DESCRIPTION		
NO.	NAME	- I/O	DESCRIPTION		
1	IN1	I	Select pin for switch 1		
2	NO1	I/O	Normally open I/O for switch 1		
3	GND	—	Ground		
4	NO2	I/O	nally open I/O for switch 2		
5	IN2	I	ect pin for switch 2		
6	COM2	I/O	mmon I/O for switch 2		
7	NC2	I/O	mally closed I/O for switch 2		
8	V+	—	er supply pin		
9	NC1	I/O	mally closed I/O for switch 1		
10	COM1	I/O	Common I/O for switch 1		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V ₊	Supply voltage ⁽²⁾		-0.5	6.5	V
V _{NC} V _{NO} V _{COM}	Analog voltage ⁽²⁾⁽³⁾⁽⁴⁾		-0.5	V ₊ + 0.5	V
I _{I/OK}	Analog port diode current	V_{NC} , V_{NO} , V_{COM} < 0 or V_{NC} , V_{NO} , V_{COM} > V_{+}		±50	mA
I _{NC} I _{NO} I _{COM}	On-state switch current	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{+}		±50	mA
V _{IN}	Digital input voltage ⁽²⁾⁽³⁾		-0.5	6.5	V
I _{IK}	Digital input clamp current	V _{IN} < 0		-50	mA
	Continuous current through V ₊ or GN	ID		±100	mA
TJ	Junction Temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground, unless otherwise specified.

(3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(4) This value is limited to 5.5 V maximum.

6.2 ESD Ratings

			VALUE	UNIT
V		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{I/O}	Switch input/output voltage	0	V ₊	V
V+	Supply voltage	1.65	5.5	V
VI	Control input voltage	0	5.5	V
T _A	Operating temperature	-40	125	°C

6.4 Thermal Information

		TS5A2		
	THERMAL METRIC ⁽¹⁾	DGS (VSSOP)	RSE (UQFN)	UNIT
		10 PINS	10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	210.5	215.4	°C/W
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	99.1	140.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	132.4	137.9	°C/W
ΨJT	Junction-to-top characterization parameter	29.1	13.7	°C/W
Ψјв	Junction-to-board characterization parameter	130.5	137.6	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics for 5-V Supply

	PARAMETER	TEST CON	IDITIONS	T _A	۷,	MIN	TYP ⁽¹⁾	MAX	UNIT	
ANALOG S	WITCH							1		
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V+	V	
r _{on}	ON-state resistance	$0 \le V_{NO} \text{ or } V_{NC} \le V_{+},$ $I_{COM} = -30 \text{ mA},$	Switch ON, see Figure 9	Full -40 to 125°C	4.5 V			10 15	Ω	
∆r _{on}	ON-state resistance match between channels	V_{NO} or V_{NC} = 3.15 V, I_{COM} = -30 mA,	Switch ON, see Figure 9	25°C	4.5 V		0.15		Ω	
r _{on(flat)}	ON-state resistance flatness	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -30 \text{ mA},$	Switch ON, see Figure 9	25°C	4.5 V		4		Ω	
I _{NC(OFF)} , I _{NO(OFF)}	NC, NO OFF leakage current	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = 0$ to V_+ ,	Switch OFF, see Figure 10	25°C Full	5.5 V	-1 -1	0.05	1	μA	
I _{NC(ON)} ,	NC, NO	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	25°C	5.5 V	-0.1		0.1	μA	
I _{NO(ON)}	ON leakage current	V_{COM} = Open, V_{NC} or V_{NO} = Open,	see Figure 10 Switch ON,	Full 25°C		1 0.1		1 0.1	•	
I _{COM(ON)}	ON leakage current	$V_{COM} = 0$ to V_+ ,	see Figure 10	Full	5.5 V	-1		1	μA	
DIGITAL IN	PUTS (IN12, IN2) ⁽²⁾					N/ 07				
V _{IH}	Input logic high			Full -40 to 125°C	4.75 V to 5.25 V	V ₊ × 0.7 3.1			V	
V _{IL}	Input logic low			Full				V ₊ × 0.3	V	
	Input lookago current	V _{IN} = 5.5 V or 0		25°C	5.5 V	-1	0.05	1		
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 5.5 V 01 0		Full	5.5 v	-1		1	μA	
DYNAMIC										
	Turnon time	$\label{eq:VNC} \begin{array}{llllllllllllllllllllllllllllllllllll$	V_{NC} = GND and V_{NO} = V_{+}		Full	4.5 V to 5.5 V	1.7		5.7	ns
t _{ON}			C _L = 50 pF, see Figure 12	-40 to 125°C	4.75 V to 5.25 V	1.2		8.7	ns	
		V_{NC} = GND and V_{NO} = V_{+}	R _L = 500 Ω,	Full	4.5 V to 5.5 V	0.8		3.8	ns	
t _{OFF}	Turnoff time	or $V_{NC} = V_{+}$ and $V_{NO} = GND$,	$C_L = 50 \text{ pF},$ see Figure 12	-40 to 125℃	4.75 V to 5.25 V	0.5		6.8	ns	
t _{BBM}	Break-before-make time	$\label{eq:VNC} \begin{split} V_{NC} &= V_{NO} = V_{+}/2, \\ R_{L} &= 50~\Omega, \end{split}$	C _L = 35 pF, see Figure 13	Full	4.5 V to 5.5 V	0.5			ns	
Q _C	Charge injection	$\label{eq:VNC} \begin{split} V_{NC} &= V_{NO} = V_{+}/2, \\ R_{L} &= 50~\Omega, \end{split}$	See Figure 17	25°C	5 V		7		рС	
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch OFF, see Figure 11	25°C	5 V		5.5		pF	
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch ON, see Figure 11	25°C	5 V		17.5		pF	
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{+} \text{ or GND},$	Switch ON, see Figure 11	25°C	5 V		17.5		pF	
C _{IN}	Digital input capacitance	$V_{IN} = V_{+}$ or GND,	See Figure 11	25°C	5 V		2.8		pF	
BW	Bandwidth	R _L = 50 Ω,	Switch ON, see Figure 14	25°C	4.5 V		220		MHz	

 $V_{2} = 4.5 \text{ V}$ to 5.5 V_{2} $T_{4} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

T_A = 25°C.
All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

Electrical Characteristics for 5-V Supply (continued)

	PARAMETER	TE	TEST CONDITIONS		۷.	MIN TYP ⁽¹⁾ MAX	UNIT
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, see Figure 15	25°C	4.5 V	-65	dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, see Figure 16	25°C	4.5 V	-66	dB
THD	Total harmonic distortion	$ \begin{aligned} R_{L} &= 600 \ \Omega, \\ C_{L} &= 50 \ pF, \end{aligned} $	f = 600 Hz to 20 kHz, see Figure 18	25°C	4.5 V	0.01%	
SUPPLY							·
	Positive supply		Switch ON or OFF	25°C	5.5 V		
1 ₊	current	$V_{IN} = V_{+} \text{ or GND},$	Switch ON of OFF	Full	5.5 V	10	μΑ
ΔI_{+}	Change in supply current	$V_{\rm IN}=V_+-0.6~V$		Full	5.5 V	500) μΑ

6.6 Electrical Characteristics for 3.3-V Supply

	PARAMETER	TEST CON	T _A	V.	MIN	TYP ⁽¹⁾	MAX	UNIT	
ANALOG S	WITCH								
$\begin{array}{l} V_{COM},V_{NO},\\ V_{NC} \end{array}$	Analog signal range					0		V+	V
r _{on}	ON-state resistance	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, see Figure 9	Full -40 to	3 V			18 23	Ω
Δr_{on}	ON-state resistance match between channels	V_{NO} or V_{NC} = 2.1 V, I_{COM} = -24 mA,	Switch ON, see Figure 9	125°C 25°C	3 V		0.2	20	Ω
r _{on(flat)}	ON-state resistance	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, see Figure 11	25°C	3 V		9		Ω
I _{NC(OFF)} , I _{NO(OFF)}	NC, NO OFF leakage current	$V_{NC} \text{ or } V_{NO} = 0 \text{ to } V_+,$ $V_{COM} = 0 \text{ to } V_+,$	Switch OFF, see Figure 10	25°C	3.6 V	-1	0.05	1	μA
I _{NC(ON)} ,	NC, NO	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	Full 25°C	3.6 V	-1 -0.1		0.1	μA
INO(ON)	ON leakage current	V_{COM} = Open, V_{NC} or V_{NO} = Open,	see Figure 10 Switch ON,	Full 25°C	3.6 V	-1 -0.1		1 0.1	
ICOM(ON)	ON leakage current	$V_{COM} = 0$ to V_+ ,	see Figure 10	Full	3.0 V	-1		1	μA
	PUTS (IN12, IN2) ⁽²⁾	1			1 1				
V _{IH}	Input logic high			Full		$V_{+} \times 0.7$			V
V _{IL}	Input logic low			Full				V ₊ × 0.3	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 5.5 V or 0		25°C Full	3.6 V	1 1	0.05	1	μA
DYNAMIC									
tau	Turn-on time	$V_{NC} = GND$ and $V_{NO} = V_+$	$R_L = 500 \Omega,$ $C_L = 50 pF,$	Full	3 V to	2.5		7.6	ns
t _{ON}	rum-on ume	$V_{\rm NC} = V_+$ and $V_{\rm NO} = GND$,	see Figure 12	-40 to 125°C	3.6 V	2.0		10.6	ns
	— ""	$V_{\text{NC}} = \text{GND}$ and $V_{\text{NO}} = V_{+}$	$R_L = 500 \Omega$,	Full	3 V to	1.5		5.3	ns
t _{OFF}	Turnoff time	or $V_{NC} = V_+$ and $V_{NO} = GND$,	C _L = 50 pF, see Figure 12	-40 to 125°C	3.6 V	1.0		8.3	ns
t _{BBM}	Break-before-make time		C _L = 35 pF, see Figure 13	Full	3 V to 3.6 V	0.5			ns
Q _C	Charge injection		see Figure 17	25°C	3.3 V		3		рС
BW	Bandwidth	$R_L = 50 \Omega,$ Switch ON,	see Figure 14	25°C	3 V		220		MHz
O _{ISO}	OFF isolation		Switch OFF, see Figure 15	25°C	3 V		-65		dB
X _{TALK}	Crosstalk	$ \begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 10 \ MHz, \end{array} $	Switch ON, see Figure 16	25°C	3 V		-66		dB
THD	Total harmonic distortion		f = 600 Hz to 20 kHz, see Figure 18	25°C	3 V		0.015%		
SUPPLY					-				
I+	Positive supply current	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	25°C Full	3.6 V			1 10	μA
ΔI_{+}	Change in supply current	$V_{IN} = V_{+} - 0.6 V$		Full	3.6 V			500	μA

4000 to 0500 (male ... • •

(1) T_A = 25°C.
(2) All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

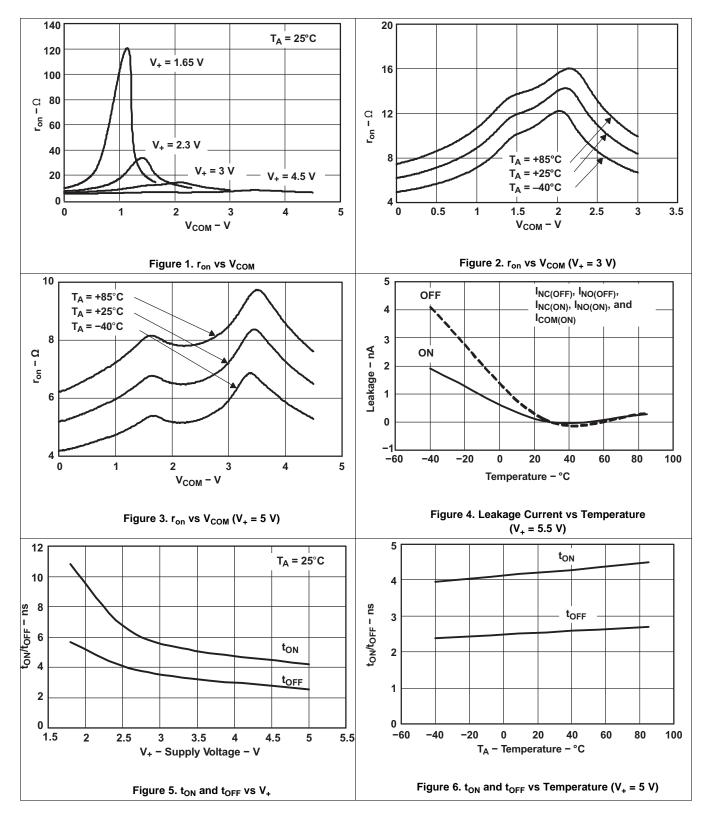
6.7 Electrical Characteristics for 2.5-V Supply

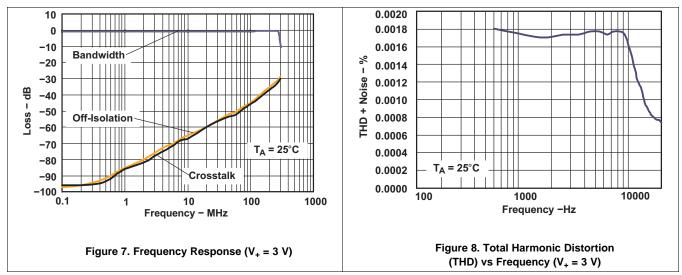
 V_{\star} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted)

	PARAMETER	TEST CON	T _A	V.	MIN	TYP ⁽¹⁾	MAX	UNIT	
ANALOG S	SWITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V+	V
			Quitate ON	Full				45	
r _{on}	ON-state resistance	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -8 \text{ mA},$	Switch ON, see Figure 9	-40 to 125°C	2.3 V			50	Ω
Δr_{on}	ON-state resistance match between channels	V_{NO} or V_{NC} = 1.6 V, I_{COM} = -8 mA,	Switch ON, see Figure 9	25°C	2.3 V		0.5		Ω
r _{on(flat)}	ON-state resistance flatness	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -8 \text{ mA},$	Switch ON, see Figure 9	25°C	2.3 V		27		Ω
I _{NC(OFF)} ,	NC, NO	V_{NC} or $V_{NO} = 0$ to V_{+} ,	Switch OFF,	25°C	2.7 V	-1	0.05	1	μA
I _{NO(OFF)}	OFF leakage current	$V_{COM} = 0$ to V_+ ,	see Figure 10	Full	2.7 V	-1		1	μΑ
I _{NC(ON)} ,	NC, NO	V_{NC} or $V_{NO} = 0$ to V_{+} ,	Switch ON,	25°C	2.7 V	-0.1		0.1	
I _{NO(ON)}	ON leakage current	V _{COM} = Open,	see Figure 10	Full	2.7 V	-1		1	μA
laarvar	COM	V_{NC} or V_{NO} = Open,	Switch ON,	25°C	2.7 V	-0.1		0.1	μA
COM(ON)	ON leakage current	$V_{COM} = 0$ to V_+ ,	see Figure 10	Full	2.7 V	-1		1	μΑ
DIGITAL IN	IPUTS (IN12, IN2) ⁽²⁾			-	r				
V _{IH}	Input logic high			Full		$V_+ \times 0.7$			V
V _{IL}	Input logic low			Full				V ₊ × 0.3	V
				25°C	2.7 V	-1	0.05	1	
I _{IH} , I _{IL}	Input leakage current	$V_{IN} = 5.5 V \text{ or } 0$		Full	2.7 V	-1		1	μA
DYNAMIC									
		V_{NC} = GND and V_{NO} = V_{+}	$R_L = 500 \Omega$,	Full	2.3 V	3.5		14	
t _{ON}	Turnon time	or $V_{NC} = V_{+}$ and $V_{NO} = GND$,	$C_{L} = 50 \text{ pF},$ see Figure 12	-40 to 125°C	to 2.7 V	2.5		17	ns
		$V_{NC} = GND$ and $V_{NO} = V_{+}$	$R_L = 500 \Omega$,	Full	2.3 V	2		7.5	ns
t _{OFF}	Turnoff time	or $V_{NC} = V_+$ and $V_{NO} = GND$,	$C_L = 50 \text{ pF},$ see Figure 12	-40 to 125°C	to 2.7 V	1.5		10.5	ns
t _{BBM}	Break-before-make time		$C_{L} = 35 \text{ pF},$ see Figure 13	Full	2.3 V to 2.7 V	0.5			ns
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON, see Figure 14	25°C	2.3 V		220		MHz
O _{ISO}	OFF isolation	$\begin{aligned} R_{L} &= 50 \ \Omega, \\ f &= 10 \ MHz, \end{aligned}$	Switch OFF, see Figure 15	25°C	2.3 V		-65		dB
X _{TALK}	Crosstalk	$ \begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 10 \ MHz, \end{array} $	Switch ON, see Figure 16	25°C	2.3 V		-66		dB
THD	Total harmonic distortion	$ \begin{aligned} R_L &= 600 \ \Omega, \\ C_L &= 50 \ pF, \end{aligned} $	f = 600 Hz to 20 kHz, see Figure 18	25°C	2.3 V		0.025%		
SUPPLY		Γ			· · · ·				
I+	Positive supply	V _{IN} = V ₊ or GND,	Switch ON or OFF	25°C	2.7 V			1	μA
'+	current	$v_{\rm IN} = v_+$ or GND,		Full	2.1 V			10	μų
ΔI_{+}	Change in supply current	$V_{IN} = V_{+} - 0.6 V$		Full	2.7 V			500	μA

T_A = 25°C.
All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

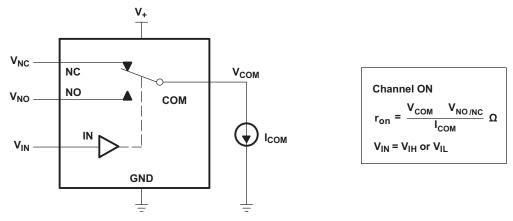
6.8 Electrical Characteristics for 1.8-V Supply

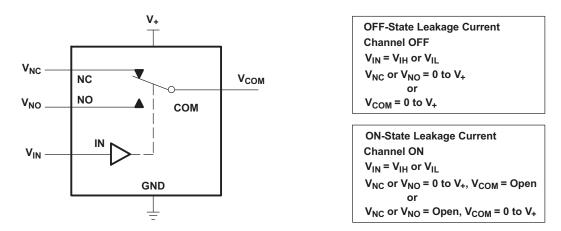

	PARAMETER	TEST CONE	DITIONS	T _A	V.	MIN	TYP ⁽¹⁾	MAX	UNIT
ANALOG	SWITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V+	V
		$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$	Switch ON,	Full				140	-
r _{on}	ON-state resistance	$I_{COM} = -4 \text{ mA},$	see Figure 9	-40 to 125°C	1.65 V			180	Ω
Δr_{on}	ON-state resistance match between channels	$\label{eq:VNO} \begin{array}{l} V_{NO} \text{ or } V_{NC} = 1.15 \text{ V}, \\ I_{COM} = -4 \text{ mA}, \end{array}$	Switch ON, see Figure 9	25°C	1.65 V		1		Ω
r _{on(flat)}	ON-state resistance flatness	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -4 \text{ mA},$	Switch ON, see Figure 9	25°C	1.65 V		110		Ω
I _{NC(OFF)} ,	NC, NO	V_{NC} or $V_{NO} = 0$ to V_{+} ,	Switch OFF,	25°C	1.95 V	-1	0.05	1	μA
I _{NO(OFF)}	OFF leakage current	$V_{COM} = 0$ to V_+ ,	see Figure 10	Full	1.95 V	-1		1	μΑ
I _{NC(ON)} ,	NC, NO	V_{NC} or $V_{NO} = 0$ to V_{+} ,	Switch ON,	25°C	1.95 V	-0.1		0.1	μA
I _{NO(ON)}	ON leakage current	V _{COM} = Open,	see Figure 10	Full	1.95 V	-1		1	μΑ
	СОМ	V _{NC} or V _{NO} = Open,	Switch ON,	25°C	1.95 V	-0.1		0.1	
ICOM(ON)	ON leakage current	$V_{COM} = 0$ to V_+ ,	see Figure 10	Full	1.95 V	-1		1	μA
DIGITAL	INPUTS (IN12, IN2) ⁽²⁾								
VIH	Input logic high			Full		V ₊ × 0.75			V
V _{IL}	Input logic low			Full				V ₊ × 0.25	V
	Innut lookogo ourrent			25°C	1.95 V	-1	0.05	1	
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 5.5 V or 0		Full	1.95 V	-1		1	μA
DYNAMIC	0								
		$V_{NC} = GND$ and $V_{NO} = V_{+}$	R _L = 500 Ω,	Full	1.65 V	7		24	ns
t _{ON}	Turnon time	or $V_{NC} = V_{+}$ and $V_{NO} = GND$,	$C_L = 50 \text{ pF},$ see Figure 12	-40 to 125°C	to 1.95 V	5.5		27	ns
		$V_{NC} = GND$ and $V_{NO} = V_{+}$	R _L = 500 Ω,	Full	1.65 V	3		13	
t _{OFF}	Turnoff time	or $V_{NC} = V_{+}$ and $V_{NO} = GND$,	$C_L = 50 \text{ pF},$ see Figure 12	-40 to 125°C	to 1.95 V	2		16	ns
t _{BBM}	Break-before-make time	$ \begin{array}{l} V_{\text{NC}} = V_{\text{NO}} = V_{\text{+}}/2, \\ R_{\text{L}} = 50 \ \Omega, \end{array} $	C _L = 35 pF, see Figure 13	Full	1.65 V to 1.95 V	0.5			ns
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON, see Figure 14	25°C	1.8 V		220		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 10 MHz,	Switch OFF, see Figure 15	25°C	1.8 V		-60		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 10 MHz,	Switch ON, see Figure 16	25°C	1.8 V		-66		dB
THD	Total harmonic distortion	$ \begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 50 \ pF, \end{array} $	f = 600 Hz to 20 kHz, see Figure 18	25°C	1.8 V		0.015%		
SUPPLY				-					
I+	Positive supply	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	25°C	1.95 V			1	μA
'+	current	$v_{\rm IN} = v_+$ or GND,		Full	1.95 V				μΑ
	Change in			1					


40°C to 85°C (unless otherwise noted) **١**/

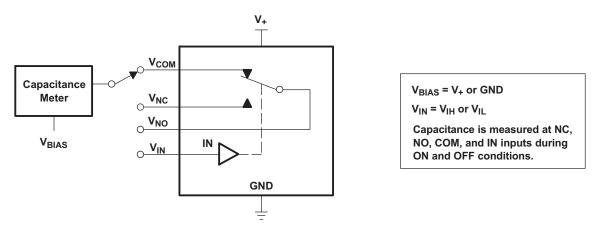
T_A = 25°C.
All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

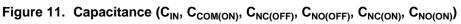
TS5A23157 SCDS165F - MAY 2004 - REVISED JANUARY 2019

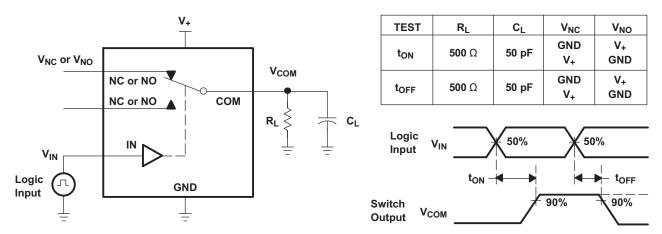

6.9 Typical Characteristics

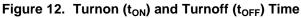


Typical Characteristics (continued)


7 Parameter Measurement Information







Parameter Measurement Information (continued)

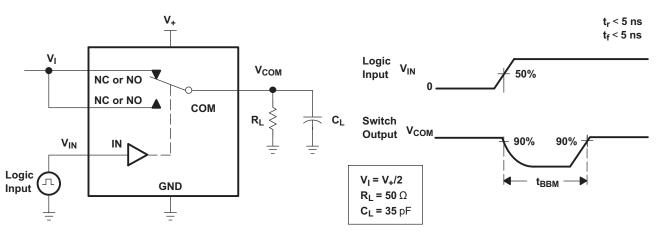
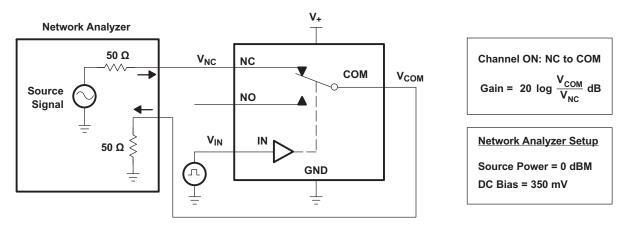
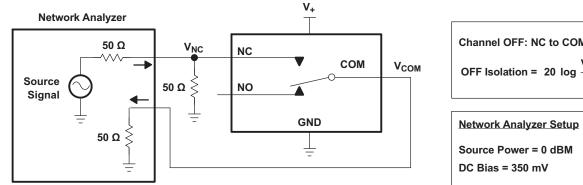
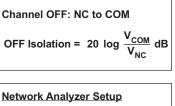
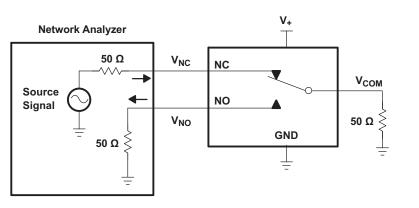


Figure 13. Break-Before-Make (t_{BBM}) Time


Figure 14. Frequency Response (BW)

Parameter Measurement Information (continued)

Figure 15. OFF Isolation (O_{ISO})

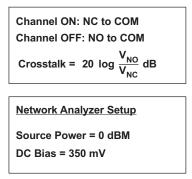
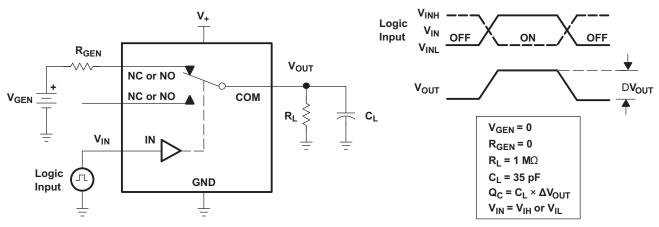
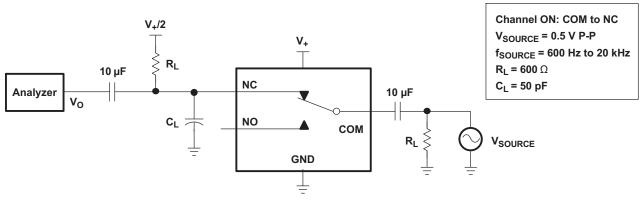
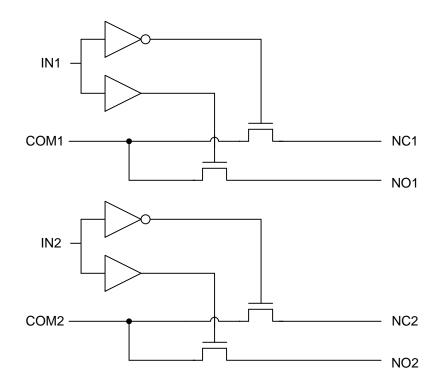




Figure 16. Crosstalk (X_{TALK})

Parameter Measurement Information (continued)


8 Detailed Description

8.1 Overview

The TS5A23157 is a dual single-pole-double-throw (SPDT) solid-state analog switch. The TS5A23157, like all analog switches, is bidirectional. When powered on, each COM pin is connected to its respective NC pin when the IN pin is low. For this device, NC stands for *normally closed* and NO stands for *normally open*. If IN is low, COM is connected to NC. If IN is high, COM is connected to NO.

The TS5A23157 is a break-before-make switch. This means that during switching, a connection is broken before a new connection is established. The NC and NO pins are never connected to each other.

8.2 Functional Block Diagram

8.3 Feature Description

The low ON-state resistance, ON-state resistance matching, and charge injection in the TS5A23157 make this switch an excellent choice for analog signals that require minimal distortion. In addition, the low THD allows audio signals to be preserved more clearly as they pass through the device.

The 1.65-V to 5.5-V operation allows compatibility with more logic levels, and the bidirectional I/Os can pass analog signals from 0 V to V_{+} with low distortion. The control inputs are 5-V tolerant, allowing control signals to be present without V_{CC} .

8.4 Device Functional Modes

Table 1 lists the functional modes for TS5A23157.

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO								
L	ON	OFF								
Н	OFF	ON								

Table 1. Function Table

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TS5A3157 can be used in a variety of customer systems. The TS5A3157 can be used anywhere multiple analog or digital signals must be selected to pass across a single line.

9.2 Typical Application

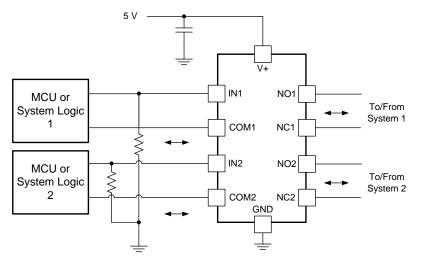


Figure 19. System Schematic for TS5A23157

9.2.1 Design Requirements

In this particular application, V_+ was 5 V, although V_+ is allowed to be any voltage specified in *Recommended Operating Conditions*. A decoupling capacitor is recommended on the V+ pin. See *Power Supply Recommendations* for more details.

9.2.2 Detailed Design Procedure

In this application, IN is, by default, pulled low to GND. Choose the resistor size based on the current driving strength of the GPIO, the desired power consumption, and the switching frequency (if applicable). If the GPIO is open-drain, use pullup resistors instead.

Typical Application (continued)

9.2.3 Application Curve

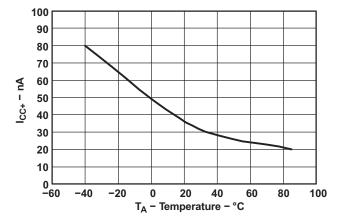


Figure 20. Power-Supply Current vs Temperature ($V_{+} = 5 V$)

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F bypass capacitor is recommended. If there are multiple pins labeled V_{CC}, then a 0.01- μ F or 0.022- μ F capacitor is recommended for each V_{CC} because the V_{CC} pins will be tied together internally. For devices with dual supply pins operating at different voltages, for example V_{CC} and V_{DD}, a 0.1- μ F bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self–inductance of the trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Below figure shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

Unused switch I/Os, such as NO, NC, and COM, can be left floating or tied to GND. However, the IN pin must be driven high or low. Due to partial transistor turnon when control inputs are at threshold levels, floating control inputs can cause increased I_{CC} or unknown switch selection states.

11.2 Layout Example

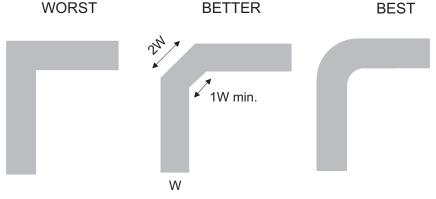


Figure 21. Trace Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Nomenclature

SYMBOL	DESCRIPTION								
V _{COM}	Voltage at COM								
V _{NC}	Voltage at NC								
V _{NO}	Voltage at NO								
r _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON								
Δr_{on}	Difference of r _{on} between channels								
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions								
I _{NC(OFF)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst- case input and output conditions								
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst- case input and output conditions								
I _{NC(ON)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) being open								
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) being open								
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (NO to COM or NC to COM) in the ON state and the output (NC or NO) being open								
V _{IH}	Minimum input voltage for logic high for the control input (IN)								
V _{IL}	Minimum input voltage for logic low for the control input (IN)								
V _{IN}	Voltage at IN								
I _{IH} , I _{IL}	Leakage current measured at IN								
t _{ON}	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM/NC/NO) signal when the switch is turning ON.								
t _{OFF}	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM/NC/NO) signal when the switch is turning OFF.								
t _{BBM}	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.								
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulombs (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L x \Delta V_O$, C_L is the load capacitance and ΔV_O is the change in analog output voltage.								
C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF								
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NC to COM) is OFF								
C _{NC(ON)}	Capacitance at the NC port when the corresponding channel (NC to COM) is ON								
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NC to COM) is ON								
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON								
C _{IN}	Capacitance of IN								
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. OFF isolation, $O_{ISO} = 20 \text{ LOG}$ (V_{NC}/V_{COM}) dB, V_{COM} is the input and V_{NC} is the output.								
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured at a specific frequency and in dB. Crosstalk, $X_{TALK} = 20 \log (V_{NC1}/V_{NO1})$, V_{NO1} is the input and V_{NC1} is the output.								
BW	Bandwidth of the switch. This is the frequency where the gain of an ON channel is -3 dB below the dc gain. Gain is measured from the equation, 20 log (V_{NC}/V_{COM}) dB, where V_{NC} is the output and V_{COM} is the input.								
l+	Static power-supply current with the control (IN) pin at V+ or GND								
ΔI_{+}	This is the increase in I ₊ for each control (IN) input that is at the specified voltage, rather than at V ₊ or GND.								

Table 2. Parameter Description

	2:1 MULTIPLEXER/DEMULTIPLEXER
CONFIGURATION	(2 × SPDT)
Number of channels	2
ON-state resistance (r _{on})	10 Ω
ON-state resistance match between channels (Δr_{on})	0.15 Ω
ON-state resistance flatness (r _{on(flat)})	4 Ω
Turnon/turnoff time (t _{ON} /t _{OFF})	5.7 ns/3.8 ns
Break-before-make time (t _{BBM})	0.5 ns
Charge injection (Q _C)	7 pC
Bandwidth (BW)	220 MHz
OFF isolation (O _{SIO})	–65 dB at 10 MHz
Crosstalk 9XTALK)	–66 dB at 10 MHz
Total harmo nic distortion (THD)	0.01%
Leakage current (I _{COM(OFF)} /I _{NC(OFF)})	±1 μA
Package options	10-pin DGS and RSE

Table 3. Summary of Characteristics

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation, see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TS5A23157DGSR	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(3BR, JBR)
TS5A23157DGSR.B	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(3BR, JBR)
TS5A23157DGSRG4	Active	Production	VSSOP (DGS) 10	2500 null	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	JBR
TS5A23157DGSRG4.B	Active	Production	VSSOP (DGS) 10	2500 null	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	JBR
TS5A23157RSER	Active	Production	UQFN (RSE) 10	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	JBO
TS5A23157RSER.B	Active	Production	UQFN (RSE) 10	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	JBO
TS5A23157RSERG4.B	Active	Production	UQFN (RSE) 10	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	JBO

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

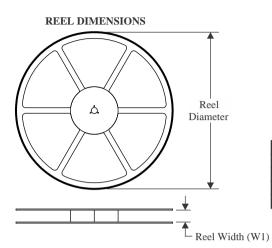
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

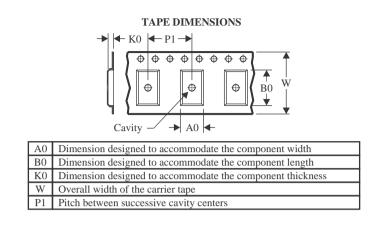
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

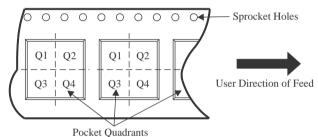
PACKAGE OPTION ADDENDUM

OTHER QUALIFIED VERSIONS OF TS5A23157 :

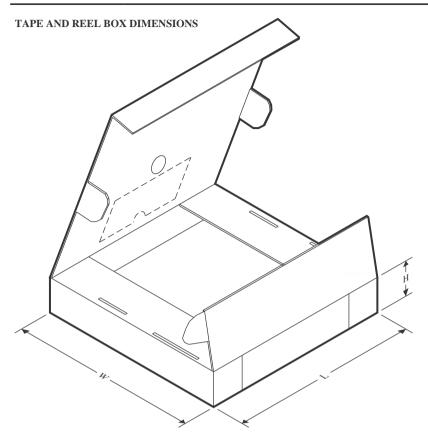

Automotive : TS5A23157-Q1


NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


14-Dec-2024

TAPE AND REEL INFORMATION


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

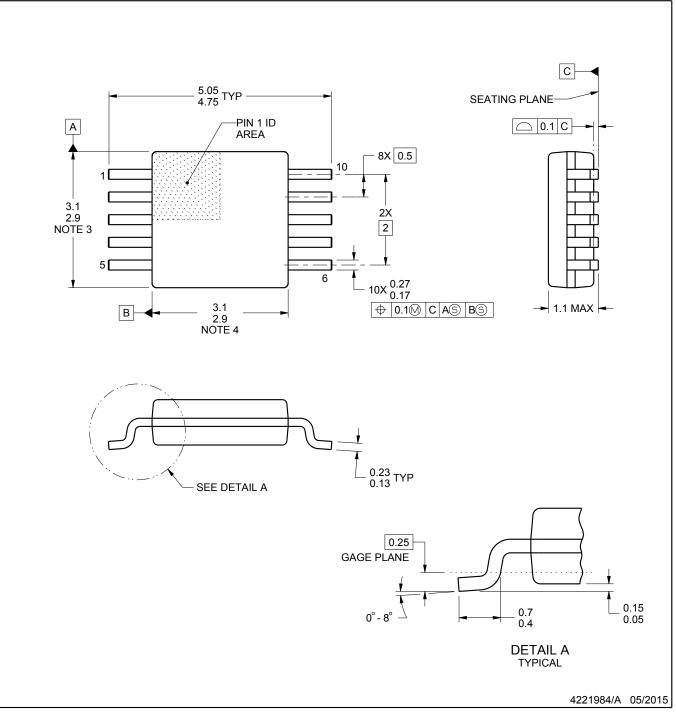
*All dimensions are nominal												
Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A23157DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
TS5A23157RSER	UQFN	RSE	10	3000	180.0	9.5	1.7	2.2	0.75	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

14-Dec-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A23157DGSR	VSSOP	DGS	10	2500	366.0	364.0	50.0
TS5A23157RSER	UQFN	RSE	10	3000	189.0	185.0	36.0

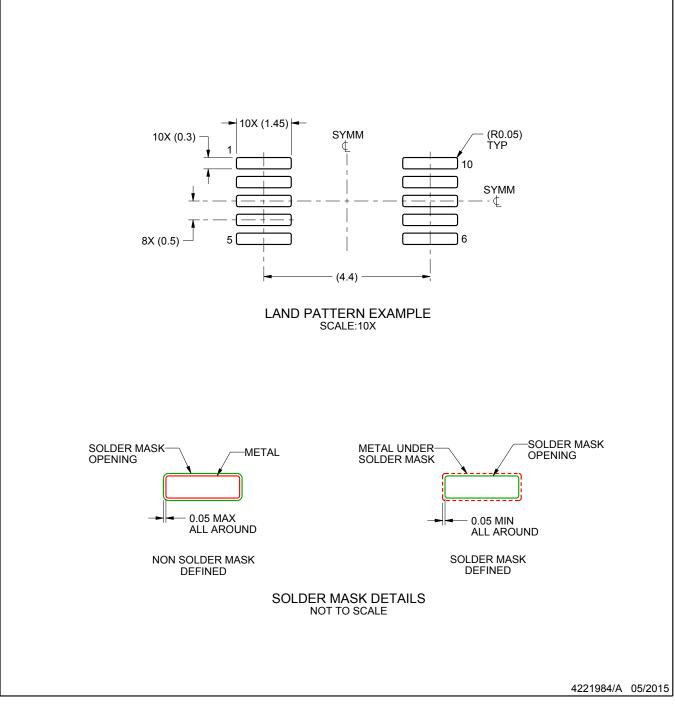

DGS0010A

PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

DGS0010A

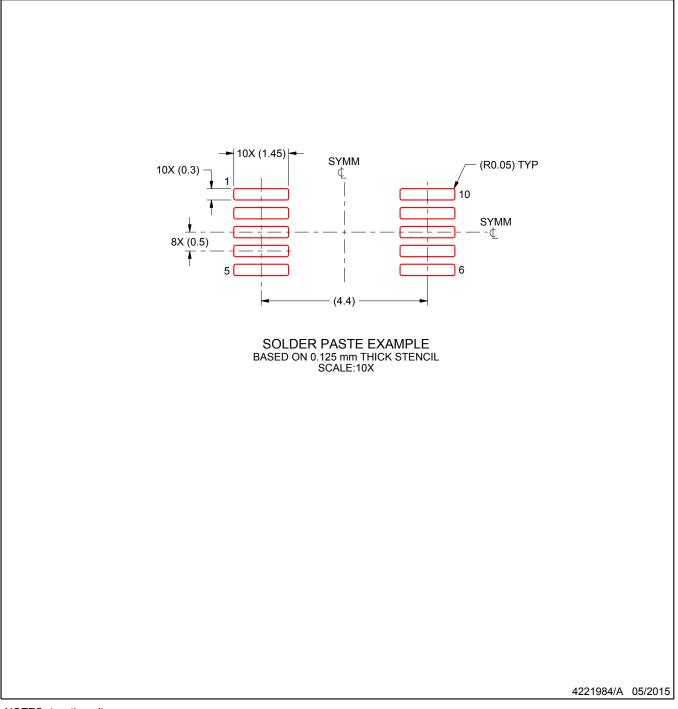
EXAMPLE BOARD LAYOUT

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DGS0010A

EXAMPLE STENCIL DESIGN

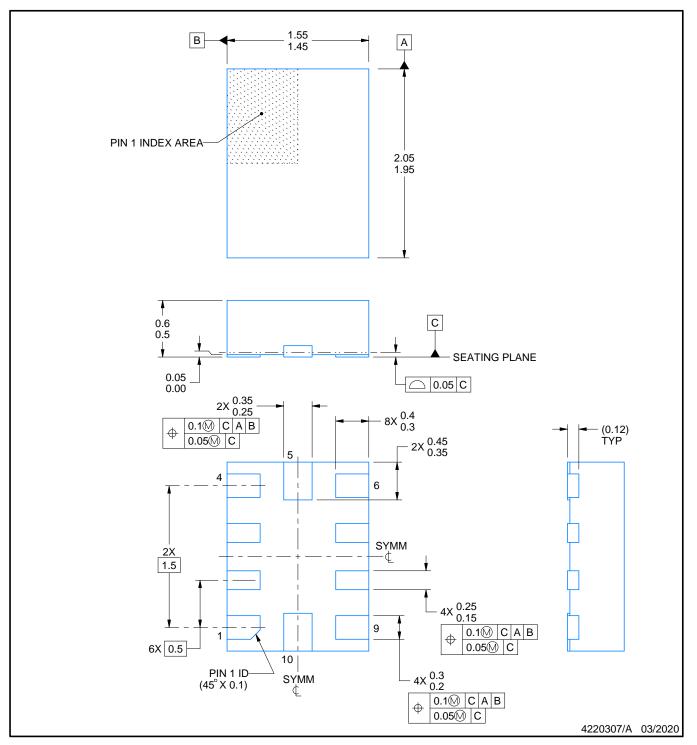
VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

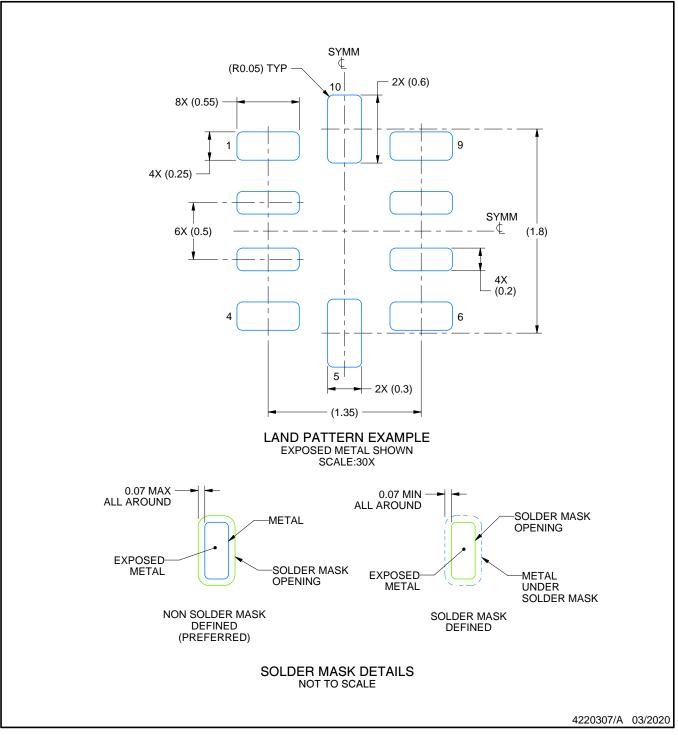

RSE0010A

PACKAGE OUTLINE

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

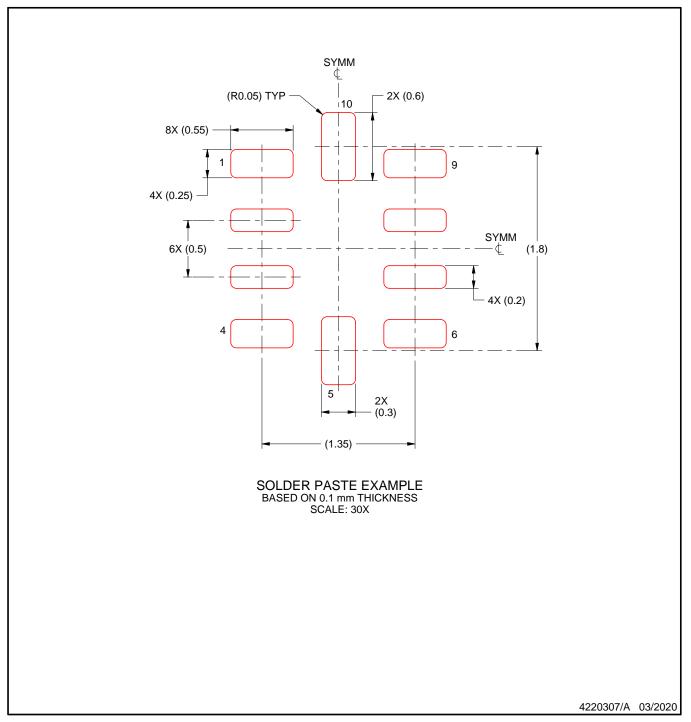
RSE0010A

EXAMPLE BOARD LAYOUT

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)


3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

RSE0010A

EXAMPLE STENCIL DESIGN

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.