

A Product Line of Diodes Incorporated

Description

PI6ULS5V9509

Level Translating I²C-Bus/SMBus Repeater with Tiny Package

Features

- ➔ Bidirectional Buffer Isolates Capacitance and Allows 400pF on Port B of the Device
- ➔ Port A Operating Supply Voltage Range of 1.1V to V_{CC(B)} - 1.0V
- → Port B Operating Supply Voltage Range of 2.5V to 5.5V
- → Voltage Level Translation from 1.1V to V_{CC(B)} 1.0V and from 2.5V to 5.5V
- ➔ Requires no External Pullup Resistors on Lower Voltage Port A
- → Open-Drain Port B Inputs/Outputs
- ➔ Lockup-Free Operation
- ➔ Supports Arbitration and Clock Stretching Across the Repeater
- ➔ Accommodates Standard Mode and Fast Mode I²C-Bus Devices and Multiple Masters
- → Powered-off High-Impedance I²C-bus Pins
- → 5V Tolerant B SCL, SDA and Enable Pins
- → 0Hz to 400kHz Clock Frequency (Note: The maximum system operating frequency can be less than 400kHz because of delays added by the repeater.)
- → ESD Protection Exceeds 8KV HBM per JESD22-A114
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → Package: MSOP-8, SOIC-8 and UQFN1.6x1.6-8L

Pin Configuration

The PI6ULS5V9509 is a level-translating I²C-bus/SMBus repeater. It can provide bidirectional-level translation between low voltage (down to 1.1V) and high voltage (2.5V to 5.5V) in mixed-mode applications, and it enables I²C and similar bus systems to be extended, without degradation of performance even during level shifting.

The PI6ULS5V9509 enables the system designer to isolate two halves of a bus for both voltage and capacitance, accommodating more I²C devices or longer trace length. It also permits extension of the I²C-bus by providing bidirectional buffering for both the data (SDA) and the clock (SCL) lines, thus allowing two buses of 400pF to be connected in an I²C application.

The bus port B drivers are compliant with SMBus I/O levels, while port A uses a current sensing mechanism to detect the input or output LOW signal, which prevents bus lockup. Port A uses a 1mA current source for pullup and a 200 Ω pulldown driver. This result in a LOW on the port A accommodating smaller voltage swings. The output pulldown on the port A internal buffer LOW is set for approximately 0.2V, while the input threshold of the internal buffer is set about 50mV lower than that of the output voltage LOW. When the port A I/O is driven LOW internally, the LOW is not recognized as a LOW by the input. This prevents a lockup condition from occurring. The output pulldown on the port B drives a hard LOW, and the input level is set at 0.3 of SMBus or I²C-bus voltage level, which enables port B to connect to any other I²C-bus devices or buffer.

The PI6ULS5V9509 drivers are not enabled unless $V_{CC(A)}$ is above 0.8 V and $V_{CC(B)}$ is above 2.5 V. The enable (EN) pin can also be used to turn the drivers on and off under system control. Caution should be observed to only change the state of the EN pin when the bus is idle.

	Pin	Description
--	-----	-------------

Pin No	Pin Name	Description
1	V _{CC(A)}	Port A Supply Voltage
2	A1	Port A (Lower Voltage Side)
3	A2	Port A (Lower Voltage Side)
4	GND	Supply Ground (0V)
5	EN	Active HIGH Repeater Enable Input
6	B2	Port B (SMBus/I ² C-Bus Side)
7	B1	Port B (SMBus/I ² C-Bus Side)
8	V _{CC(B)}	Port B Supply Voltage

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

PI6ULS5V9509

See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Block Diagram

EN	Function
Н	A1 = B1; A2 = B2;
L	Disabled

Maximum Ratings

Storage Temperature	55°C to +125°C
Supply Voltage Port B	-0.5V to +6.0V
Supply Voltage Port A	-0.5V to+6.0V
DC Input Voltage	-0.5V to +6.0V
Control Input Votage(EN)	-0.5V to+6.0V
Total Power Dissipation	100mA
Input/Output Current (Port A & B)	
Input Current (EN, V _{CC(A)} , V _{CC(B)} , GND)	
ESD: HBM Mode	8000V

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

GND = 0V; $T_{amb} = -40^{\circ}C$ to +85°C; unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ ^[1]	Max	Unit
Vcc _(B)	Supply Voltage Port B	_	2.5	_	5.5	V
Vcc _(A)	Supply Voltage Port A	—	1.1		V _{CC(B)} - 1.0	V
т	Supply Current on Din V	All port A static HIGH	0.25	0.45	0.9	
I _{CC(A)}	Supply Current on Pin $V_{CC(A)}$	All port A static LOW	1.25	3.0	5	mA
I _{CC(B)}	Supply Current on Pin $V_{CC(B)}$	All port B static HIGH	0.5	0.9	1.1	mA
Note:		All port D static mon	0.5	0.9	1.1	1112

1. Typical values with $V_{CC(A)} = 1.1 \text{ V}$, $V_{CC(B)} = 5 \text{ V}$.

A Product Line of Diodes Incorporated

PI6ULS5V9509

DC Electrical Characteristics

GND = 0V: T_{amb} = -40°C to +85°C: unless otherwise specified

mb = -40 °C to $+85$ °C; unless otherwise specifie Description	Test Conditions	Min	Typ ^[1]	Max	Unit	
utput of Port A (A1 & A2)			, r			
HIGH-Level Input Voltage	_	0.7V _{CC(A)}		V _{CC(A)}		
LOW-Level Input Voltage	_	-0.5	_	+0.3	.3 V	
Contention LOW-Level Input Voltage	—	-0.5	+0.15		V	
Input Clamping Voltage	I _L = -18 mA	-1.5		-0.5	V	
Input Leakage Current	$V_I = V_{CC(A)}$	_	_	±1	μΑ	
LOW-Level Input Current	SDA, SCL; $V_I = 0.2 V$	-1.5	-1.0	-0.45	mA	
	$V_{CC(A)} = 0.95$ V to 1.2V		0.18	0.25		
LOW-Level Output Voltage		_	0.2	0.3	V	
Difference Between LOW-Level Output and LOW-Level Input Voltage Contention	Guaranteed by design	_	50		mV	
HIGH-Level Output Leakage Current	$V_{O} = V_{CC(A)}$	—	_	10	μA	
Input/Output Capacitance	—	—	6		pF	
utput of Port B (B1 & B2)						
HIGH-Level Input Voltage	_	0.7V _{CC(B)}	_	V _{CC(B)}		
LOW-Level Input Voltage	_	-0.5	_	+0.3 V _{CC(B)}	V	
Input Clamping Voltage	I _I = -18 mA	-1.5		-0.5	V	
Input Leakage Current	$V_{I} = 3.6 V$	-1		1	μΑ	
LOW-Level Input Current	$V_{I} = 0.2 V$			10	μΑ	
LOW-Level Output Voltage	$I_{OL} = 6 \text{ mA}$	—	0.1	0.2	V	
HIGH-Level Output Leakage Current	$V_0 = 3.6 V$	_		10	μΑ	
Input/Output Capacitance	—	_	3	_	pF	
Enable						
HIGH-Level Input Voltage	—	0.9V _{CC(A)}		V _{CC(B)}	V	
LOW-Level Input Voltage	—	-0.5	—	+0.1 V _{CC(A)}	V	
LOW-Level Input Current	$V_{I} = 0.2 V, EN;$ $V_{CC} = 3.6 V$	-1		+1	μΑ	
Input Leakage Current	$V_{I} = V_{CC}$	-1		+1	μΑ	
Input Capacitance	$V_{I} = 3.0 V \text{ or } 0V$		2		pF	
	utput of Port A (A1 & A2)HIGH-Level Input VoltageLOW-Level Input VoltageContention LOW-Level Input VoltageInput Clamping VoltageInput Leakage CurrentLOW-Level Input CurrentLOW-Level Output VoltageDifference Between LOW-Level Output and LOW-Level Input Voltage ContentionHIGH-Level Output Leakage CurrentInput/Output Capacitanceutput of Port B (B1 & B2)HIGH-Level Input VoltageInput Clamping VoltageInput Clamping VoltageInput Clamping VoltageInput Leakage CurrentLOW-Level Input VoltageHIGH-Level Output Leakage CurrentLOW-Level Input VoltageHIGH-Level Output VoltageHIGH-Level Output VoltageHIGH-Level Input VoltageLOW-Level Input VoltageLOW-Level Input VoltageHIGH-Level Input CurrentInput Leakage CurrentInput Leakage CurrentInput Leakage Current	utput of Port A (A1 & A2)HIGH-Level Input VoltageLOW-Level Input VoltageInput Clamping VoltageIL= -18 mAInput Clamping VoltageIL= -18 mAInput Leakage CurrentV1 = $V_{CC(A)}$ LOW-Level Input CurrentSDA, SCL; $V_1 = 0.2 V$ VO-Level Output Voltage $V_{CC(A)} = 0.95 V to 1.2V$ VOW-Level Output Voltage $V_{CC(A)} = 0.95 V to 1.2V$ VOW-Level Output Voltage $V_{CC(A)} = 0.2 V to V_{CC(A)} = 1.2V to V_{CC(A)} = 1.$	utput of Port A (A1 & A2)HIGH-Level Input Voltage $0.7V_{CC(A)}$ LOW-Level Input Voltage -0.5 Input Clamping VoltageI _L = -18 mA-1.5Input Leakage Current $V_1 = V_{CC(A)}$ LOW-Level Input CurrentSDA, SCL; $V_1 = 0.2$ V-1.5LOW-Level Output Voltage $V_{CC(A)} = 0.95$ V to 1.2 VLOW-Level Output Voltage $V_{CC(A)} = 0.95$ V to 1.2 VDifference Between LOW-Level $V_{CC(A)} = 0.2$ V to $(V_{CC(B)} = 1.2)$ V to $(V_{CC(B)} = 1.2)$ V to $(V_{CC(B)} = 1.2)$ VDifference Between LOW-LevelGuaranteed by designVoltage ContentionGuaranteed by designHIGH-Level Output Leakage Current $V_0 = V_{CC(A)}$ Input/Output Capacitanceutput of Port B (B1 & B2) $0.7V_{CC(B)}$ LOW-Level Input VoltageI ₁ = -18 mA-1.5Input Clamping VoltageI ₁ = -18 mA-1.5Input Leakage Current $V_1 = 0.2$ VLOW-Level Input Current $V_0 = 3.6$ VLOW-Level Output Leakage Current $V_0 = 3.6$ VHIGH-Level Output VoltageHIGH-Level Input VoltageHIGH-Level Input VoltageHIGH-Level Input VoltageHIGH-Level Input VoltageHIGH-Level Input VoltageHIGH-Level Input VoltageInput/Output Capacitance-	utput of Port A (A1 & A2) HIGH-Level Input Voltage $0.7V_{CC(A)}$ LOW-Level Input Voltage -0.5 Contention LOW-Level Input Voltage -0.5 +0.15 Input Clamping Voltage IL= -18 mA -1.5 Input Leakage Current V1 = VCC(A) LOW-Level Input Current SDA, SCL; V1 = 0.2 V -1.5 -1.0 LOW-Level Output Voltage $V_{CC(A)} = 0.95$ V to $1.2V$ 0.18 UOW-Level Output Voltage $V_{CC(A)} = 0.2$ V to $1.2V$ 0.2 Difference Between LOW-Level Guaranteed by design 0.7 Input/Output Capacitance 0.7 0.2 Difference Between LOW-Level Input Voltage $$ 0.7 Input/Output Capacitance -	utput of Port A (A1 & A2) V HIGH-Level Input Voltage $0.7V_{CC(A)}$ $V_{CC(A)}$ LOW-Level Input Voltage -0.5 $+0.3$ Contention LOW-Level Input Voltage -0.5 $+0.15$ Input Clamping Voltage I ₁ = -18 mA -1.5 -0.5 Input Leakage Current V ₁ = V _{CC(A)} - ± 1 LOW-Level Input Current SDA, SCL; V ₁ = 0.2 V -1.5 -1.0 -0.45 LOW-Level Output Voltage V _{CC(A)} = 0.95 V to 1.2V 0.18 0.25 LOW-Level Output Voltage V _{CC(A)} = 0.95 V to 1.2V 0.2 0.3 Difference Between LOW-Level Input Guaranteed by design 0.2 0.3 Difference Between LOW-Level Input Guaranteed by design 0.2 0.3 Difference Between LOW-Level Input Guaranteed by design 0.6 Uput Gapacitance <	

Typical values with V_{CC(A)} = 1.1 V, V_{CC(B)} = 5 V.
 V_{IL} specification is for the falling edge seen by the port A input. V_{ILC} is for the static LOW levels seen by the port A input resulting in port B output staying LOW.

PI6ULS5V9509

Dynamic Characteristics $V_{CC(A)} = 1.1 \text{ V}; V_{CC(B)} = 3.3 \text{ V}^{[1]}$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{PLH}	LOW-to-HIGH Propagation Delay	Port B to port A	_	65	216	ns
t _{PHL}	HIGH-to-LOW Propagation Delay	Port B to port A		25	140	ns
t _{TLH}	LOW-to-HIGH Output Transition Time	Port A	14	22	96	ns
t _{THL}	HIGH-to-LOW Output Transition Time	Port A	_	20	_	ns
t _{PLH}	LOW-to-HIGH Propagation Delay	Port A to port B		-69	-139	ns
t _{PLH} 2	LOW-to-HIGH Propagation Delay	Port A to port B measured from the 50% initial LOW on port A to 1.5V rising on port B	_	100	226	ns
t _{PHL}	HIGH-to-LOW Propagation Delay	Port A to port B	20	50	183	ns
t _{TLH} ^[2]	LOW-to-HIGH Output Transition Time	Port B	-	61	—	ns
$t_{\rm THL}$	HIGH-to-LOW Output Transition Time	Port B	1	2	40	ns
t _{su}	Setup Time	EN HIGH before START condition	100			ns
t _h	Hold Time	EN HIGH after STOP condition	100	_		ns

$V_{CC(A)} = 1.9 \text{ V}; V_{CC(B)} = 5.0 \text{ V}^{[1]}$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{PLH}	LOW-to-HIGH Propagation Delay	Port B to port A		75	216	ns
t _{PHL}	HIGH-to-LOW Propagation Delay	Port B to port A	_	20	140	ns
t _{TLH}	LOW-to-HIGH Output Transition Time	Port A	14	27	96	ns
t _{THL}	HIGH-to-LOW Output Transition Time	Port A		20		ns
t _{PLH}	LOW-to-HIGH Propagation Delay	Port A to port B		-69	-139	ns
t _{PLH2}	LOW-to-HIGH Propagation Delay	Port A to port B; measured from the 50 % of initial LOW on port A to 1.5 V rising on port B	_	91	226	ns
t _{PHL}	HIGH-to-LOW Propagation Delay	Port A to port B	20	50	183	ns
t _{TLH} ²	LOW-to-HIGH Output Transition Time	Port B		65		ns
t _{THL}	HIGH-to-LOW Output Transition Time	Port B	1	2	40	ns
t _{su}	Setup Time	EN HIGH before START condition	100			ns
t _h	Hold Time	EN HIGH after STOP condition	100			ns

Note:

1. Load capacitance = 50 pF; load resistance on port B = $1.35 \text{ k}\Omega$. 2. Value is determined by RC time constant of bus line.

Figure 3: Propagation Delay and Transition Times A→B

Figure 4: Propagation Delay from Port A's External Driver Switching off to Port B LOW-to-HIGH Transition; (A→B)

R_L = load resistor; 1.35 kΩ on port B

C_L = load capacitance includes jig and probe capacitance; 50 pF

RT = termination resistance should be equal to Zo of pulse generators

R_L = load resistor; 1.35 kΩ on port B

C_L = load capacitance includes jig and probe capacitance; 50 pF

 R_T = termination resistance should be equal to Z_o of pulse generators

Figure 5: Test Circuit

Functional Description

The PI6ULS5V9509 is a level-translating I²C-bus/SMBus repeater. It can provide bidirectional level translation between low voltage (down to 1.1V) and high voltage (2.5V to 5.5V) in mixed-mode applications, and it enables I²C and similar bus systems to be extended without degradation of performance even during level shifting.

The PI6ULS5V9509 enables the system designer to isolate two halves of a bus for both voltage and capacitance, accommodating more I^2C devices or longer trace length. It also permits extension of the I^2C -bus by providing bidirectional buffering for both the data (SDA) and the clock (SCL) lines, thus allowing two buses of 400pF to be connected in an I^2C application.

The bus port B drivers are compliant with SMBus I/O levels, while port A uses a current-sensing mechanism to detect the input or output LOW signal, which prevents bus lockup. Port A uses a 1mA current source for pullup and a 200 Ω pulldown driver. This result in a LOW on the port A accommodating smaller voltage swings. The output pulldown on the port A internal buffer LOW is set for approximately 0.2V, while the input threshold of the internal buffer is set about 50mV lower than that of the output voltage LOW. When the port A I/O is driven LOW internally, the LOW is not recognized as a LOW by the input. This prevents a lockup condition from occurring. The output pulldown on the port B drives a hard LOW, and the input level is set at 0.3 of SMBus or I²C-bus voltage level, which enables port B to connect to any other I²C-bus devices or buffer.

The PI6ULS5V9509 drivers are not enabled unless $V_{CC(A)}$ is above 0.8V and $V_{CC(B)}$ is above 2.5V. The enable (EN) pin can also be used to turn the drivers on and off under system control. Caution should be observed to only change the state of the EN pin when the bus is idle.

Application Information

A typical application is shown in Figure 6. In this example, the system master is running on a 1.1V I²C-bus while the slave is connected to a 3.3 V bus. Both buses run at 400kHz. Master devices can be placed on either bus.

When port B of the PI6ULS5V9509 is pulled LOW by a driver on the I²C-bus, a CMOS hysteresis detects the falling edge when it goes below $0.3V_{CC(B)}$ and causes the internal driver on port A to turn on, causing port A to pull down to about 0.2 V. When port A of the PI6ULS5V9509 falls, first a comparator detects the falling edge and causes the internal driver on port B to turn on and pull the port B pin down to ground. In order to illustrate what would be seen in a typical application, refer to Figure 7 and Figure 8. If the bus master in Figure 6 writes to the slave through the PI6ULS5V9509, waveforms shown in Figure 7 are observed on the B bus. This looks like a normal I²C-bus transmission.

On the A bus side of the PI6ULS5V9509, the clock and data lines have a positive offset from ground equal to the V_{OL} of the PI6ULS5V9509. After the eighth clock pulse, the data line is pulled to the VOL of the master device, which is very close to ground in this example. At the end of the acknowledge, the level rises only to the LOW level set by the driver in the PI6ULS5V9509 for a short delay while the B bus side rises above 0.5 $V_{CC(B)}$, then it continues HIGH. It is important to note that any arbitration or clock-stretching events require that the LOW level on the A bus side at the input of the PI6ULS5V9509 (V_{IL}) is below V_{ILC} to be recognized by the PI6ULS5V9509 and then transmitted to the B bus side.

Figure 6: Typical Application

Part Marking

U Package

Y: Date Code (Year) W: Date Code (Workweek) 1st X: Assembly Site Code 2nd X: Wafer Fab Site Code Bar above "L" means Fab3 of MGN Bar above fab code means Cu wire

XT Package

qX: PI6ULS5V9509XT

Y: Date Code (Year) W: Date Code (Workweek) Bar above X means Fab3 of MGN

W Package

Y: Date Code (Year) W: Date Code (Workweek) 1st X: Assembly Site Code 2nd X: Wafer Fab Site Code Bar above "I" means Fab3 of MGN Bar above fab code means Cu wire

Packaging Mechanical

8-MSOP (U)

16-0242

A Product Line of Diodes Incorporated

8-SOIC (W)

PI6ULS5V9509

8-UQFN (XT)

16-0286

For latest package information:

See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Part No.	Package Code	Package Description
PI6ULS5V9509UEX	U	8-Pin, Mini Small Outline Package (MSOP)
PI6ULS5V9509WEX	W	8-Pin, 150mil-Wide (SOIC)
PI6ULS5V9509XTEX	XT	8-Pin, 1.6x1.6, COL (UQFN)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

PI6ULS5V9509

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated www.diodes.com