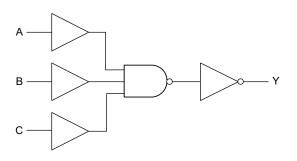


74LVC1G11Q Automotive Single 3-Input Positive AND Gate

GENERAL DESCRIPTION


The 74LVC1G11Q is a single 3-input positive AND gate which can accept the supply voltage range from 1.65V to 5.5V. It implements the Boolean function $Y = A \cdot B \cdot C$ or $Y = \overline{A} + \overline{B} + \overline{C}$ in positive logic.

This device is highly suitable for partial power-down applications by using power-off leakage current (I_{OFF}) circuit. When the device is powered down, the outputs are disabled, and the current backflow can be prevented from passing through the device.

The device is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

The 74LVC1G11Q is available in Green SC70-6 and SOT-23-6 packages. It operates over an ambient temperature range of -40°C to +125°C.

LOGIC DIAGRAM

FEATURES

AEC-Q100 Qualified for Automotive Applications
 Device Temperature Grade 1

 $T_A = -40^{\circ}C$ to +125°C

- Wide Supply Voltage Range: 1.65V to 5.5V
- Inputs Accept Voltages up to 5.5V
- +24mA/-24mA Output Current at V_{CC} = 3.0V
- Low Quiescent Current: I_{CC} = 0.1μA (TYP)
- Propagation Delay: 5.25ns (TYP) at V_{CC} = 3.3V
- Support Partial Power-Down Mode
- -40°C to +125°C Operating Temperature Range
- Available in Green SC70-6 and SOT-23-6 Packages

APPLICATIONS

Automotive Applications
Battery Powered Equipment
Medical Equipment
Industrial Equipment
Telecom Equipment
Wireless Equipment

FUNCTION TABLE

	OUTPUT				
Α	ВС		В С		Y
Н	Н	Н	Н		
L	X	X	L		
X	L	X	L		
X	X	L	L		

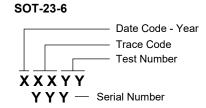
 $Y = A \cdot B \cdot C$ or $Y = \overline{A} + \overline{B} + \overline{C}$

H = High Voltage Level

L = Low Voltage Level

X = Don't Care

Automotive Single 3-Input Positive AND Gate


PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
741.1/04.044.0	SC70-6	-40°C to +125°C	74LVC1G11QC6G/TR	1L7XX	Tape and Reel, 3000	
74LVC1G11Q	SOT-23-6	-40°C to +125°C	74LVC1G11QN6G/TR	XXXYY 1IU	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: X = Date Code. XXX = Date Code and Trace Code. **SC70-6**

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage, V _{CC}	0.5V to 6.5V
Input Voltage, V _I ⁽²⁾	0.5V to 6.5V
Output Voltage, V _O ⁽²⁾	
Active Mode0.5V to MIN(6	.5V, V _{CC} + 0.5V)
Power-Down Mode	0.5V to 6.5V
Input Clamp Current, I _{IK} (V _I < 0V)	50mA
Output Clamp Current, I _{OK} (V _O < 0V)	50mA
Continuous Output Current, Io	±50mA
Continuous Current through V_{CC} or GND	±100mA
Junction Temperature (3)	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	TBD
CDM	TBD

RECOMMENDED OPERATING CONDITIONS

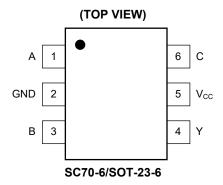
Supply Voltage, V _{CC}	1.65V to 5.5V
Input Voltage, V _I	0V to 5.5V
Output Voltage, V _O	
Active Mode	0V to V _{CC}
Power-Down Mode, V _{CC} = 0V	0V to 5.5V
Input Transition Rise or Fall Rate, $\Delta t/\Delta V$	
V _{CC} = 1.8V ± 0.15V, 2.5V ± 0.2V	20ns/V (MAX)
$V_{CC} = 3.3V \pm 0.3V, 5.0V \pm 0.5V$	10ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

Automotive Single 3-Input Positive AND Gate

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 3, 6	A, B, C	Data Inputs.
2	GND	Ground.
4	Y	Data Output.
5	V _{cc}	Supply Voltage.

Automotive Single 3-Input Positive AND Gate

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
		V _{CC} = 1.65\	/ to 1.95V	Full	0.67 × V _{CC}			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{CC} = 2.3V	V _{CC} = 2.3V to 2.7V		1.7] ,
High-Level Input Voltage	V _{IH}	V _{CC} = 2.7V	to 3.6V	Full	2.0			V
		V _{CC} = 4.5V	to 5.5V	Full	0.7 × V _{CC}			
		V _{CC} = 1.65\	/ to 1.95V	Full			0.35 × V _{CC}	
Lave Lavel Innet Valtage		V _{CC} = 2.3V	to 2.7V	Full			0.7	.,
Low-Level Input Voltage	V _{IL}	V _{CC} = 2.7V	to 3.6V	Full			0.8	V
		V _{CC} = 4.5V	to 5.5V	Full			0.3 × V _{CC}	
			V_{CC} = 1.65V to 5.5V, I_{OH} = -100 μ A	Full		V _{CC} - 0.01		
			V _{CC} = 1.65V, I _{OH} = -4mA	Full		1.55		V
	V _{он}		V _{CC} = 2.3V, I _{OH} = -8mA	Full		2.15		
High-Level Output Voltage		$V_{I} = V_{IH}$ or V_{IL}	V _{CC} = 2.7V, I _{OH} = -12mA	Full		2.5		
			V _{CC} = 3.0V, I _{OH} = -16mA	Full		2.7		
			V _{CC} = 3.0V, I _{OH} = -24mA	Full		2.7		
			$V_{CC} = 4.5V, I_{OH} = -32mA$	Full		4.5		
			V_{CC} = 1.65V to 5.5V, I_{OL} = 100 μ A	Full		0.01		
			V _{CC} = 1.65V, I _{OL} = 4mA	Full		0.1		
			V _{CC} = 2.3V, I _{OL} = 8mA	Full		0.15		
Low-Level Output Voltage	V _{OL}	$V_I = V_{IH}$ or V_{IL}	V _{CC} = 2.7V, I _{OL} = 12mA	Full		0.2		V
			V _{CC} = 3.0V, I _{OL} = 16mA	Full		0.2		
			$V_{CC} = 3.0V, I_{OL} = 24mA$	Full		0.3		
			$V_{CC} = 4.5V, I_{OL} = 32mA$	Full		0.35		
Input Leakage Current	I _I	V _{CC} = 0V to	V _{CC} = 0V to 5.5V, V _I = 5.5V or GND			±0.1		μΑ
Power-Off Leakage Current	I _{OFF}	$V_{CC} = 0V$, V_I or $V_O = 5.5V$		Full		±0.1		μA
Supply Current	I _{CC}	$I_0 = 0A$				0.1		μА
Additional Supply Current	ΔI _{CC}	Per pin, V_C $I_O = 0A$	$_{\text{C}}$ = 3.0V to 5.5V, V_{I} = V_{CC} - 0.6V,	Full		0.1		μΑ
Input Capacitance	Cı	$V_{CC} = 3.3V$,	$V_I = GND$ to V_{CC}	+25°C		5		pF

Automotive Single 3-Input Positive AND Gate

DYNAMIC CHARACTERISTICS

(See Figure 1 for test circuit. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
Propagation Delay (1)		A, B or C to Y, C _L = 30pF or 50pF, see Table 1	V _{CC} = 1.8V ± 0.15V	Full		9.50		ns
	4		$V_{CC} = 2.5V \pm 0.2V$	Full		6.25		
	t _{PD}		$V_{CC} = 3.3V \pm 0.3V$	Full		5.25		
			$V_{CC} = 5.0V \pm 0.5V$	Full		4.75		
Power Dissipation Capacitance (2)	C _{PD}	f = 10MHz	V _{CC} = 1.8V	+25°C		39		
			V _{CC} = 2.5V	+25°C		34		
			V _{CC} = 3.3V	+25°C		35		pF
			V _{CC} = 5.0V	+25°C		43		

NOTES:

- 1. t_{PD} is the same as t_{PLH} and t_{PHL} .
- 2. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

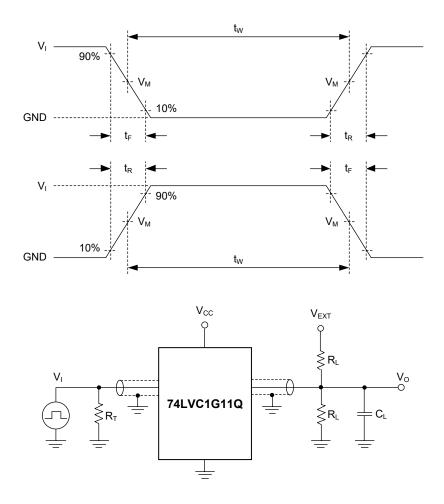
$$P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$$

where

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.

C_L = Output load capacitance in pF.


V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{Sum of outputs.}$

Automotive Single 3-Input Positive AND Gate

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Zo of the pulse generator).

 V_{EXT} : External voltage is used to measure switching times.

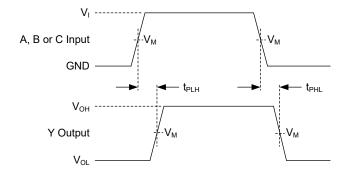

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LO	V _{EXT}	
V _{cc}	Vı	V _I t _R , t _F		R∟	t _{PLH} , t _{PHL}
1.8V ± 0.15V	V _{CC}	≤ 2.0ns	30pF	1kΩ	Open
2.5V ± 0.2V	V_{CC}	≤ 2.0ns	30pF	500Ω	Open
3.3V ± 0.3V	3.0V	≤ 2.5ns	50pF	500Ω	Open
5.0V ± 0.5V	V _{CC}	≤ 2.5ns	50pF	500Ω	Open

Automotive Single 3-Input Positive AND Gate

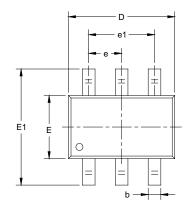
WAVEFORMS

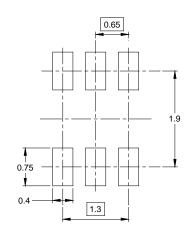
Test conditions are given in Table 1.

Measurement points are given in Table 2.

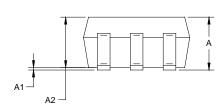
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

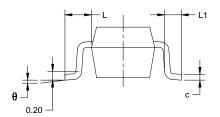
Figure 2. Input (A, B or C) to Output (Y) Propagation Delays


Table 2. Measurement Points

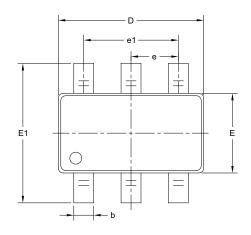

SUPPLY VOLTAGE	INF	OUTPUT	
V _{CC}	Vı	V _M ⁽¹⁾	V _M
1.8V ± 0.15V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
2.5V ± 0.2V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
3.3V ± 0.3V	3.0V	1.5V	1.5V
5.0V ± 0.5V	Vcc	0.5 × V _{CC}	0.5 × V _{CC}

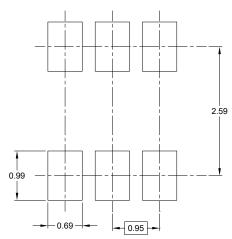
NOTE:


1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

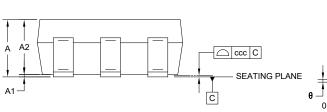

PACKAGE OUTLINE DIMENSIONS SC70-6

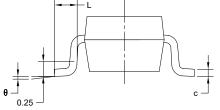
RECOMMENDED LAND PATTERN (Unit: mm)



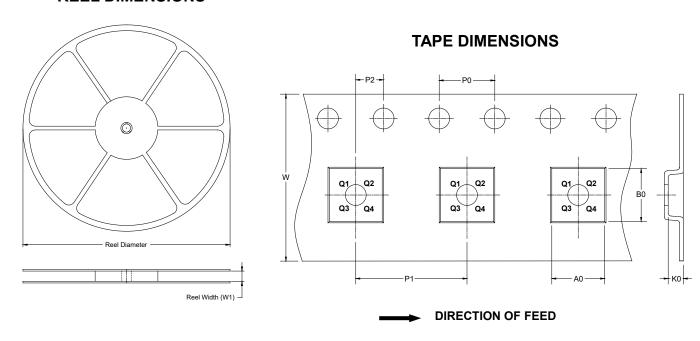

Symbol	_	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	0.800	1.100	0.031	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.800	1.000	0.031	0.039		
b	0.150	0.350	0.006	0.014		
С	0.080	0.220	0.003	0.009		
D	2.000	2.200	0.079	0.087		
E	1.150	1.350	0.045	0.053		
E1	2.150	2.450	0.085	0.096		
е	0.65	TYP	0.026	TYP		
e1	1.300	BSC	0.051	BSC		
L	0.525	REF	0.021 REF			
L1	0.260	0.460	0.010	0.018		
θ	0°	8°	0°	8°		

NOTES:


- 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.


PACKAGE OUTLINE DIMENSIONS SOT-23-6

RECOMMENDED LAND PATTERN (Unit: mm)

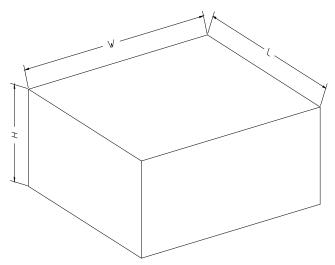

Cymph ol	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
Α	-	-	1.450				
A1	0.000	-	0.150				
A2	0.900	-	1.300				
b	0.300	-	0.500				
С	0.080	-	0.220				
D	2.750	-	3.050				
Е	1.450	-	1.750				
E1	2.600	-	3.000				
е		0.950 BSC					
e1		1.900 BSC					
L	0.300	-	0.600				
θ	0°	-	8°				
ccc		0.100					

NOTES:

- This drawing is subject to change without notice.
 The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MO-178.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SC70-6	7"	9.5	2.40	2.50	1.20	4.0	4.0	2.0	8.0	Q3
SOT-23-6	7"	9.5	3.23	3.17	1.37	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	70000