8-Bit Dual-Supply Translating Transceiver with Configurable Voltage Translation; 3-State Outputs

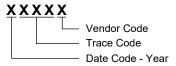
GENERAL DESCRIPTION

The 74AVC8T245 is an 8-bit, dual-supply translating transceiver that enables bidirectional level translation. It has one 8-bit input-output ports (An and Bn), a direction control (DIR) input, an output enable ($\overline{\text{OE}}$) input and dual supply pins (V_{CCA} and V_{CCB}).

Both V_{CCA} and V_{CCB} can be supplied at any voltage between 0.8V and 3.6V making the device suitable for low voltage bidirectional translation between 0.8V, 1.2V, 1.5V, 1.8V, 2.5V and 3.3V voltage nodes. Pins An, \overline{OE} and DIR are referenced to V_{CCA} and pins Bn are referenced to V_{CCB} . The direction control (DIR) input determines the direction of the data flow. The DIR (active high) enables data from An ports to Bn ports. The DIR (active low) enables data from Bn ports to An ports. The output enable (\overline{OE}) input, when high, disables both An and Bn ports so the buses are effectively isolated.

The device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either V_{CCA} or V_{CCB} is at GND level, both An and Bn ports are in the high-impedance state.

FEATURES


- Wide Supply Voltage Range:
 - V_{CCA}: 0.8V to 3.6V
 - V_{CCB}: 0.8V to 3.6V
- Typically Data Rates:
 - 380Mbit/s (≥ 1.8V to 3.3V Translation)
 - 260Mbit/s (≥ 1.1V to 3.3V Translation)
 - 260Mbit/s (≥ 1.1V to 2.5V Translation)
 - 210Mbit/s (≥ 1.1V to 1.8V Translation)
 - 150Mbit/s (≥ 1.1V to 1.5V Translation)
 - 100Mbit/s (≥ 1.1V to 1.2V Translation)
- Suspend Mode
- Inputs Accept Voltages up to 3.6V
- I_{OFF} Circuitry Provides Partial Power-Down Mode Operation
- -40°C to +125°C Operating Temperature Range
- Available in a Green TQFN-5.5×3.5-24L Package

PACKAGE/ORDERING INFORMATION

MODEL PACKAGE DESCRIPTION		SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
74AVC8T245	TQFN-5.5×3.5-24L	-40°C to +125°C	74AVC8T245XTQQ24G/TR	R43 XTQQ XXXXX	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage Range, V _{CCA}	0.5V to 4.6V
Supply Voltage Range, V _{CCB}	0.5V to 4.6V
Input Voltage Range, V _I (2)	0.5V to 4.6V
Output Voltage Range, V _O	
Active Mode (2)(3)(4)	0.5V to (V _{CCO} + 0.5V)
Suspend or 3-State Mode (2)	
Output Current, I_O (V_O = 0V to V_{CC})	±50mA
Supply Current, $I_{\text{CC}},$ per V_{CCA} or V_{CCB}	Pin 100mA
Ground Current, I _{GND} , per GND Pin	100mA
Input Clamp Current, I _{IK} (V _I < 0)	50mA
Output Clamp Current, I _{OK} (V _O < 0)	50mA
Continuous Output Current	±50mA
Junction Temperature (5)	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	8000V
CDM	1000V

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 3. V_{CCO} is the supply voltage associated with the output port.
- 4. V_{CCO} + 0.5V should not exceed 4.6V.

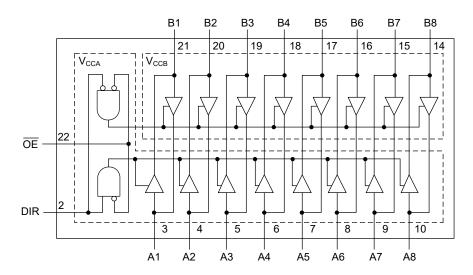
5. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CCA}	0.8V to 3.6V
Supply Voltage Range, V _{CCB}	0.8V to 3.6V
Input Voltage Range, V _I	0V to 3.6V
Output Voltage Range, Vo	
Active Mode (6)	0V to V _{CCO}
Suspend or 3-State Mode	0V to 3.6V
Input Transition Rise and Fall Rate, Δt	/ΔV ⁽⁷⁾
V _{CCI} = 0.8V to 3.6V	10ns/V (MAX)
Operating Temperature Range	40°C to +125°C

NOTES:

- 6. V_{CCO} is the supply voltage associated with the output port.
- 7. V_{CCI} is the supply voltage associated with the input port.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

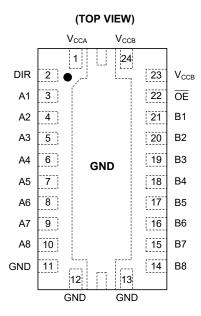
DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

LOGIC SYMBOL

FUNCTION TABLE

SUPPLY VOLTAGE	CONTRO	L INPUT	INPUT/OUTPUT			
V _{CCA} , V _{CCB}	ŌĒ	DIR	An	Bn		
0.8V to 3.6V	L	L	An = Bn	Inputs		
0.8V to 3.6V	L	Н	Inputs	Bn = An		
0.8V to 3.6V	Н	X	Z	Z		
GND	X	X	Z	Z		


H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

PIN CONFIGURATION

TQFN-5.5×3.5-24L

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	Vcca	Supply Voltage V _{CCA} .
2	DIR	Direction Control Input.
3, 4, 5, 6, 7, 8, 9, 10	A1, A2, A3, A4, A5, A6, A7, A8	Data Inputs/Outputs.
11, 12, 13	GND	Ground.
14, 15, 16, 17, 18, 19, 20, 21	B8, B7, B6, B5, B4, B3, B2, B1	Data Inputs/Outputs.
22	ŌĒ	Output Enable Input (Active Low).
23, 24	V _{ССВ}	Supply Voltage V _{CCB} .

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, V_{CCI} is the supply voltage associated with the data input port; V_{CCO} is the supply voltage associated with the output port, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
High-Level Output Voltage	V _{OH}	$V_{CCA} = V_{CCB} = 0.8$	3V, V _I = V _{IH} , I _O = -1.5mA	+25°C		0.7		V	
Low-Level Output Voltage	V _{OL}	$V_{CCA} = V_{CCB} = 0.8V, V_I = V_{IL}, I_O = 1.5 mA$				0.1		V	
Input Leakage Current	Iı	$V_{CCA} = V_{CCB} = 0.8$ $V_{I} = 0V \text{ or } 3.6V$	$V_{CCA} = V_{CCB} = 0.8V$ to 3.6V, DIR, \overline{OE} inputs, $V_{I} = 0V$ or 3.6V			±0.01	±2	μΑ	
		$V_{CCA} = V_{CCB} = 3.6$	6V, A or B port, V ₀ = 0V or V _{CCO}	Full		±0.01	±2		
Off-State Output Current (1)	l _{oz}	$V_{CCA} = 3.6V, V_{CC}$ $V_{O} = 0V \text{ or } V_{CCO}$	_B = 0V, suspend mode A port,	Full		±0.01	±2	μA	
		$V_{CCA} = 0V, V_{CCB} = V_{CCA} = 0V$ or V_{CCO}	V _{CCA} = 0V, V _{CCB} = 3.6V, suspend mode B port,			±0.01	±2		
Power-Off Leakage		V _{CCA} = 0V, V _{CCB} = 0.8V to 3.6V, A port, √ _I or V _O = 0V to 3.6V		Full		±0.01	±2		
Current	I _{OFF}	000 - , 0011	$V_{CCB} = 0V$, $V_{CCA} = 0.8V$ to 3.6V, B port, V_{I} or $V_{O} = 0V$ to 3.6V			±0.01	±2	μΑ	
Input Capacitance	Cı	$V_{CCA} = V_{CCB} = 3.3$	3V, DIR, OE inputs, V₁ = 0V or 3.3V	+25°C		5		pF	
Input/Output Capacitance	C _{I/O}	$V_{CCA} = V_{CCB} = 3.3$	BV, A and B ports, V _O = 3.3V or 0V	+25°C		8		pF	
		A port.	$V_{CCA} = 0.8V \text{ to } 3.6V, V_{CCB} = 0.8V \text{ to } 3.6V$	Full		0.4	35		
		$V_I = 0\dot{V}$ or V_{CCI} ,	$V_{CCA} = 3.6V, V_{CCB} = 0V$	Full		0.01	35		
		I _O = 0A	V _{CCA} = 0V, V _{CCB} = 3.6V	Full	-12	-0.01			
		B port,	$V_{CCA} = 0.8V \text{ to } 3.6V, V_{CCB} = 0.8V \text{ to } 3.6V$	Full		0.4	35		
Supply Current	I _{cc}	$V_I = 0V$ or V_{CCI} ,	V _{CCA} = 3.6V, V _{CCB} = 0V	Full	-12	-0.01		μΑ	
		$I_0 = 0$	V _{CCA} = 0V, V _{CCB} = 3.6V	Full		0.01	35	1	
		$V_{CCA} = 0.8V \text{ to } 3.$	$I_{CA} + I_{CCB}$, $I_{O} = 0A$, $V_{I} = 0V$ or V_{CCI} , $I_{CCB} = 0.8V$ to $3.6V$	Full		0.8	45		
			$c_A + I_{CCB}$), $I_O = 0A$, $V_I = 0V$ or V_{CCI} , $6V$, $V_{CCB} = 1.1V$ to $3.6V$	Full		0.8	45		

NOTE:

1. For I/O ports, the parameter I_{OZ} includes the input leakage current.

ELECTRICAL CHARACTERISTICS (continued)

(Full = -40° C to $+125^{\circ}$ C, V_{CCI} is the supply voltage associated with the data input port; V_{CCO} is the supply voltage associated with the output port, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
			V _{CCI} = 0.8V	Full	0.8 × V _{CCI}			
		Data inputs	V _{CCI} = 1.1V to 1.95V	Full	0.7 × V _{CCI}			
		Data Inputs	V _{CCI} = 2.3V to 2.7V	Full	1.6			
High-Level Input			V _{CCI} = 3.0V to 3.6V	Full	2			V
Voltage	V_{IH}		V _{CCA} = 0.8V	Full	0.8 × V _{CCA}			V
		DIR, ŌĒ	V _{CCA} = 1.1V to 1.95V	Full	0.7 × V _{CCA}			
		inputs	V _{CCA} = 2.3V to 2.7V	Full	1.6			
			V _{CCA} = 3.0V to 3.6V	Full	2			
			V _{CCI} = 0.8V	Full			0.3 × V _{CCI}	
		Data inputs	V _{CCI} = 1.1V to 1.95V	Full			0.35 × V _{CCI}	· v
			V _{CCI} = 2.3V to 2.7V	Full			0.7	
Low-Level Input	V		V _{CCI} = 3.0V to 3.6V	Full			0.8	
Voltage	V _{IL}	DIR, ŌE inputs	V _{CCA} = 0.8V	Full			0.3 × V _{CCA}	
			V _{CCA} = 1.1V to 1.95V	Full			0.35 × V _{CCA}	
			V _{CCA} = 2.3V to 2.7V	Full			0.7	
			V _{CCA} = 3.0V to 3.6V	Full			0.8	
			I_{O} = -100 μ A, V_{CCA} = V_{CCB} = 0.8V to 3.6V	Full	V _{CCO} - 0.1			
			$I_0 = -3mA$, $V_{CCA} = V_{CCB} = 1.1V$	Full	0.85	1		
High-Level Output	V _{OH}	$V_I = V_{IH}$	$I_O = -6mA$, $V_{CCA} = V_{CCB} = 1.4V$	Full	1.05	1.26		V
Voltage	V ОН	VI - VIH	I_{O} = -8mA, V_{CCA} = V_{CCB} = 1.65V	Full	1.2	1.5		V
			$I_O = -9mA$, $V_{CCA} = V_{CCB} = 2.3V$	Full	1.75	2.1		
			I_{O} = -12mA, V_{CCA} = V_{CCB} = 3.0V	Full	2.3	2.8		
			I_O = 100 μ A, V_{CCA} = V_{CCB} = 0.8V to 3.6V	Full			0.1	
			$I_O = 3mA$, $V_{CCA} = V_{CCB} = 1.1V$	Full		0.11	0.25	
Low-Level Output	V _{OL}	$V_I = V_{IL}$	$I_O = 6mA$, $V_{CCA} = V_{CCB} = 1.4V$	Full		0.19	0.35	V
Voltage	VOL	VI - VIL	I _O = 8mA, V _{CCA} = V _{CCB} = 1.65V	Full		0.22	0.45	_ v
		1	I _O = 9mA, V _{CCA} = V _{CCB} = 2.3V	Full		0.22	0.55	
			I _O = 12mA, V _{CCA} = V _{CCB} = 3.0V	Full		0.28	0.7	

ELECTRICAL CHARACTERISTICS (continued)

Typical Total Supply Current (I_{CCA} + I_{CCB})

(T_A = +25°C, unless otherwise noted.)

V	V _{CCB}								
V _{CCA}	0V	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS	
0V	0	0.01	0.01	0.01	0.01	0.01	0.01	μA	
0.8V	0.01	0.05	0.05	0.05	0.05	0.2	0.6	μA	
1.2V	0.01	0.05	0.05	0.05	0.05	0.1	0.4	μA	
1.5V	0.01	0.05	0.05	0.05	0.05	0.05	0.3	μA	
1.8V	0.01	0.05	0.05	0.05	0.05	0.05	0.2	μA	
2.5V	0.01	0.2	0.1	0.1	0.05	0.05	0.05	μA	
3.3V	0.01	0.6	0.4	0.3	0.2	0.05	0.03	μA	

Typical Power Dissipation Capacitance

 $(T_A = +25^{\circ}C, V_{CCA} = V_{CCB}, unless otherwise noted.)$

PARAMETER	SYMBOL	CONDITIONS		UNITS					
PARAIVIETER	OTHER	CONDITIONS	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS
		A port: (direction An to Bn), output enabled	1.1	1.1	1.2	1.2	1.3	1.4	
		A port: (direction An to Bn), output disabled	0.6	0.7	0.7	0.7	0.8	0.9	
		A port: (direction Bn to An), output enabled	13.3	13.5	13.5	13.7	14.5	15.3	
Power Dissipation	_	A port: (direction Bn to An), output disabled	0.5	0.5	0.5	0.5	0.5	0.5	~F
Capacitance (1) (2)	C _{PD}	B port: (direction An to Bn), output enabled	13.7	13.7	14.0	14.3	15.0	15.7	pF
		B port: (direction An to Bn), output disabled	0.5	0.5	0.5	0.5	0.5	0.5	
		B port: (direction Bn to An), output enabled	1.1	1.1	1.2	1.2	1.3	1.4	
		B port: (direction Bn to An), output disabled	0.6	0.7	0.7	0.7	0.8	0.9	

NOTES

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times {V_{CC}}^2 \times f_i \times N + \Sigma (C_L \times {V_{CC}}^2 \times f_o)$

where:

 f_i = Input frequency in MHz.

fo = Output frequency in MHz.

C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = Sum of the outputs.

2. f_i = 10MHz; V_I = GND to V_{CC} ; t_R = t_F = 1ns; C_L = 0pF; R_L = ∞ .

DYNAMIC CHARACTERISTICS

Typical Dynamic Characteristics at $V_{CCA} = 0.8V$ and $T_A = +25^{\circ}C$

(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	V _{CCB}						UNITS
PARAMETER	STIMBOL		0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS
Down and in Dalam		An to Bn	43	20	18	17	17	17	
Propagation Delay	t _{PD}	Bn to An	38	32	31	30	29	29	ns
Disable Time	tous	OE to An	37	37	35	35	35	33	
Disable Time		OE to Bn	47	30	30	29	25	24	ns
For all Is Time a	t _{es} ,	OE to An	44	43	43	42	42	42	ns
Enable Time		OE to Bn	51	24	22	21	21	21	

NOTE:

1. tpD is the same as tpLH and tpHL; tDIS is the same as tpLZ and tpHZ; tEN is the same as tpZL and tpZH.

Typical Dynamic Characteristics at $V_{CCB} = 0.8V$ and $T_A = +25^{\circ}C$

(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3, unless otherwise noted.)

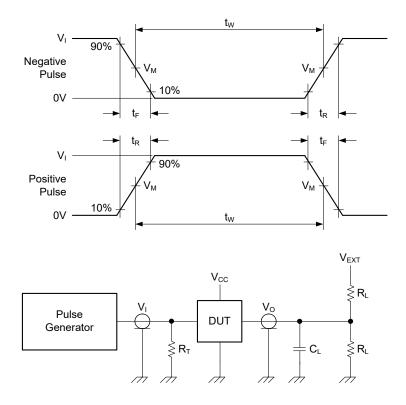
PARAMETER	SYMBOL	CONDITIONS	V _{CCA}						UNITS
PARAMETER			0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS
Propagation Dolay	4	An to Bn	43	34	33	32	31	31	no
Propagation Delay	t _{PD}	Bn to An	38	20	18	17	17	16	ns
Dia ahla Tima	t _{DIS}	OE to An	37	14	11	9	8	6	
Disable Time		OE to Bn	47	34	30	30	27	26	ns
Finals Time	t _{eN}	OE to An	44	13	14	7	5	4	ns
Enable Time		OE to Bn	51	40	44	47	61	35	

NOTE:

1. t_{PD} is the same as t_{PLH} and t_{PHL} ; t_{DIS} is the same as t_{PLZ} and t_{PHZ} ; t_{EN} is the same as t_{PZL} and t_{PZH} .

DYNAMIC CHARACTERISTICS (continued)

Typical Dynamic Characteristics at T_A = +25℃


(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3, unless otherwise noted.)

					V _{CCB}			
PARAMETER	SYMBOL	CONDITIONS	1.2V ± 0.1V	1.5V ± 0.1V	1.8V ± 0.15V	2.5V ± 0.2V	3.3V ± 0.3V	UNITS
			TYP	TYP	TYP	TYP	TYP	
V _{CCA} = 1.1V to 1.3V	•							
Dana a satisma Dalay		An to Bn	12	10	9	9	8	
Propagation Delay	t _{PD}	Bn to An	12	9	8	8	7	ns
Disable Time	4	OE to An	12	13	13	13	14	no
Disable Time	t _{DIS}	OE to Bn	16	14	13	12	12	ns
Enable Time		OE to An	14	15	14	14	14	20
Enable Time	t _{EN}	OE to Bn	16	12	11	11	10	ns
V _{CCA} = 1.4V to 1.6V								
Propagation Delay	+	An to Bn	10	7	7	6	5	20
Propagation Delay	t _{PD}	Bn to An	10	7	6	6	5	ns
Disable Time	t _{DIS}	OE to An	8	9	9	8	9	ne
Disable Time Enable Time V _{CCA} = 1.65V to 1.95V	UIS	OE to Bn	12	10	9	8	8	ns
Enable Time	t	OE to An	8	8	8	8	8	ns
Lilable Time	t _{EN}	OE to Bn	12	8	8	7	7	
V _{CCA} = 1.65V to 1.95V	1							
Propagation Delay	t _{PD}	An to Bn	9	7	6	5	5	ns
	tPD	Bn to An	9	6	6	5	5	
Disable Time	tous	OE to An	7	6	7	7	7	ns
Disable Time	t _{DIS}	OE to Bn	12	9	9	8	7	115
Enable Time	t _{EN}	OE to An	6	6	6	6	6	ns
Lilable Time	LEN	OE to Bn	11	7	6	5	5	113
V _{CCA} = 2.3V to 2.7V		<u></u>			,			
Propagation Delay	t _{PD}	An to Bn	8	6	6	4	4	ns
Tropagation Belay	40	Bn to An	9	5	5	4	4	110
Disable Time	t _{DIS}	OE to An	6	6	6	6	6	ns
Biodbie Time	UIS	OE to Bn	12	9	8	6	6	110
Enable Time	t _{EN}	OE to An	4	4	4	4	4	ns
Enable Time	EN	OE to Bn	10	6	6	5	4	110
V _{CCA} = 3.0V to 3.6V	T	1	1	T	T	T	1	
Propagation Delay	t _{PD}	An to Bn	8	5	4	4	4	ns
spagation boldy	****	Bn to An	8	5	5	4	4	110
Disable Time	t _{DIS}	OE to An	5	5	5	5	5	ns
2.34510 11110	פותי	OE to Bn	11	9	8	7	6	
Enable Time	+	OE to An	9	6	5	4	4	ns
	*EIN	OE to Bn	9	6	5	4	4	

NOTE:

1. t_{PD} is the same as t_{PLH} and t_{PHL} ; t_{DIS} is the same as t_{PLZ} and t_{PHZ} ; t_{EN} is the same as t_{PZL} and t_{PZH} .

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

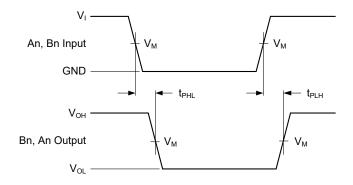
R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Figure 1. Test Circuit for Measuring Switching Times

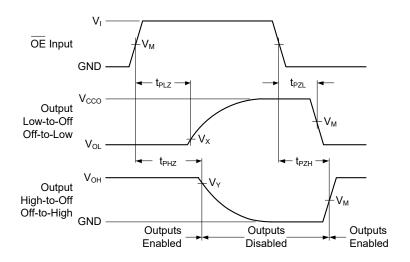

Table 1. Test Conditions

SUPPLY VOLTAGE	INF	TU	LOAD		V _{EXT}			
V _{CCA} , V _{CCB}	V _I ⁽¹⁾	Δt/ΔV ⁽²⁾	C _L R _L		t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} (3)	
0.8V to 1.6V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}	
1.65V to 2.7V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}	
3.0V to 3.6V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}	

NOTES:

- 1. V_{CCI} is the supply voltage associated with the data input port.
- 2. dV/dt ≥ 1.0V/ns
- 3. V_{CCO} is the supply voltage associated with the output port.

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (An, Bn) to Output (Bn, An) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

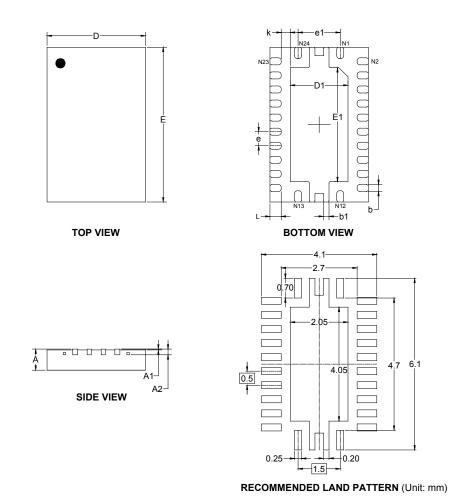
Table 2. Measurement Points

SUPPLY VOLTAGE	INPUT (1)	OUTPUT (2)				
V _{CCA} , V _{CCB}	V _M	V _M	V _X	V _Y		
0.8V to 1.6V	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.1V	V _{OH} - 0.1V		
1.65V to 2.7V	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.15V	V _{OH} - 0.15V		
3.0V to 3.6V	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.3V	V _{OH} - 0.3V		

NOTES:

- 1. V_{CCI} is the supply voltage associated with the data input port.
- 2. V_{CCO} is the supply voltage associated with the output port.

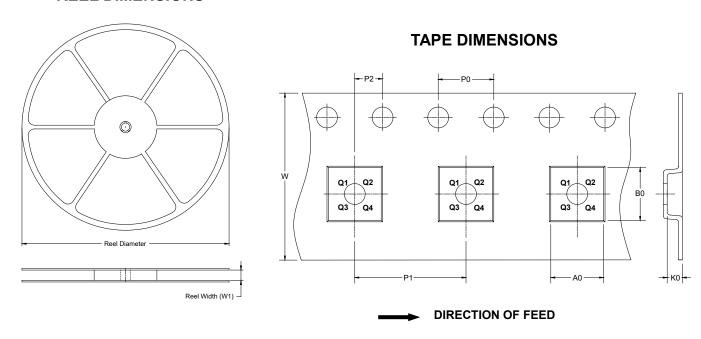
74AVC8T245


8-Bit Dual-Supply Translating Transceiver with Configurable Voltage Translation; 3-State Outputs

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

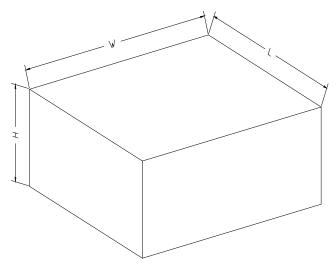
Changes from Original (MARCH 2021) to REV.A	Page
Changed from product preview to production data	All


PACKAGE OUTLINE DIMENSIONS TQFN-5.5×3.5-24L

Symbol		nsions meters	Dimensions In Inches		
	MIN MAX		MIN	MAX	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008 REF		
D	3.400	3.600	0.134	0.142	
D1	1.950	2.150	0.077	0.085	
E	5.400	5.600	0.213	0.220	
E1	3.950	4.150	0.156	0.163	
k	0.325 REF		0.013 REF		
b	0.200	0.300	0.008	0.012	
b1	0.150	0.250	0.006	0.010	
L	0.300	0.500	0.012	0.020	
е	0.500	BSC	0.020 BSC		
e1	1.500	BSC	0.059 BSC		

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-5.5×3.5-24L	13"	12.4	3.80	5.80	1.00	4.0	8.0	2.0	12.0	Q1

TX10000.000

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13″	386	280	370	5