3A Bipolar Linear Regulator

DESCRIPTION

BL1085 is a series of low dropout three terminal regulators with a typical dropout voltage of 1.4V at 3A load current.

Other than fixed voltage versions (1.8V, 2.5V, 3.3V, 5.0V), BL1085 has an adjustable voltage version, with which desired voltage can be achieved by setting the values of two external resistors of the application circuitry.

BL1085 offers thermal shut down and current limit functions to assure the stability of chip and power system.

BL1085 series is available in standard packages of TO-263-2L, TO-263-3L, TO-220 and TO-252.

TYPICAL APPLICATION

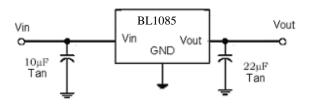


Fig 1. BL1085 fixed version Application circuit

NOTE: Input capacitor (Cin=10uF) and Output capacitor (Cout=22uF) are recommended in all application circuit. Tantalum capacitor is preferred.

FEATURES

- Fixed and adjustable versions.
- Maximum output current : 3A
- Maximum input voltage: 15V
- Line regulation: 0.2% (Typical)
- Load regulation: 0.2% (Typical)
- On-Chip Thermal Shutdown
- - ~ 85℃

APPLICATIONS

- Power Management for Computer Mother Board, Graphic Card
- Battery Charger
- Post Regulators for Switching Supplies
- Microprocessor Supply

ELECTRICAL CHARACTERISTICS

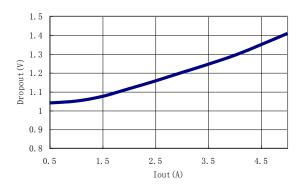


Fig 2. Dropout Voltage VS. Output Current

ORDERING INFORMATION

BL1085 1 2 3

Code	Description
	Output voltage:
1	e.g. 18=1.8V
	33=3.3V
	Default=Adjustable Version
2	Temperature&Rohs:
	C: -40~85°C ,Pb Free Rohs Std.
	Package type:
	Y:TO-252
3	S:TO-263-2L
	S1:TO-263-3L
	Z:TO-220-3L

ABSOLUTE MAXIMUM RATING

Pa	rameter	Value				
Max Input Vo	Max Input Voltage					
Operating Ju	ınction	150°C				
Temperature	e(Tj)					
Ambient Ten	nperature(Ta)	-40°C -85°C				
Package	TO-252	6℃ / W				
Thermal	TO-263	3℃ / W				
Resistance	TO-220	3℃ / W				
Storage Tem	perature(Ts)	-40°C -150°C				
Lead Tempe	rature & Time	260°C,10S				

Note:

Exceed these limits to damage to the device. Exposure to absolute maximum rating conditions may affect device reliability.

RECOMMENDED WORK CONDITIONS

Parameter	Value
Input Voltage Range	Max.15V
Operating Junction Temperature(Tj)	-10°C –125°C
Tomporataro(1))	

PIN CONFIGURATION

Pin Description:

Fixed Version

Pin No.	Symbol	Definition
1	GND Ground	
2	Vout	Output
3	Vin	Input

Adjustable Version

Pin No.	Symbol	Definition
1	Adj.	Adjustable
2	Vout	Output
3	Vin	Input

Marking information:

A: Means assembly year and weeks

71: Moune accombly your and wooke							
Year	2010	2011	2012	2013			
Υ	0	1	2	3			

Week	1	2	•••	26	27	•••	52	53
w	Α	В	••	Z	Ā	•••	Z	Α

B: Means Manufacture LOT No.

C: Means Output Voltage Value

D: Means Temp. Range&Rohs Std

ELECTRICAL CHARACTERISTICS

Tj=25℃

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vref	Reference Voltage	10mA≤Iout≤3A ,1.5V≤Vin-Vout≤5V	1.225	1.25	1.275	V
		BL1085-1.80V Iout=0mA,Vin=4.8V,Tj=25°C 10mA≤Iout≤3A ,3.4V≤Vin≤7V	1.773 1.764	1.80 1.80	1.827 1.836	V
		BL1085-2.50V Iout=0mA,Vin=5.5V,Tj=25°C 10mA≤Iout≤3A ,4.1V≤Vin≤7V	2.462 2.45	2.50 2.50	2.537 2.55	V
Vout	Output Voltage	BL1085-3.3V Iout=0mA,Vin=6.3V,Tj=25°C 10mA ≤Iout≤3A ,4.9V≤Vin≤8V	3.25 3.234	3.3 3.3	3.350 3.366	V
		BL1085-5.0V Iout=0mA,Vin=8.0V,Tj=25°C 10mA ≤Iout≤3A,6.6V≤Vin≤10V	4.925 4.90	5.0 5.0	5.075 5.10	V
	Line Regulation (note 1)	BL1085-ADJ Iout=10mA, 2.85V≤Vin≤10V		10	40	mV
		BL1085-1.8V Iout=10mA, 3.4V≤Vin≤10V		10	40	mV
ΔVout		BL1085-2.5V Iout=10mA, 4.1V≤Vin≤10V		10	40	mV
		BL1085-3.3V Iout=10mA, 4.9V≤Vin≤10V		10	40	mV
		BL1085-5.0V Iout=10mA, 6.6V≤Vin≤10V		10	40	mV
	Load Regulation (note 1,2)	BL1085-ADJ (ADJ connected to ground) Vin-Vout=1.6V, 10mA≤Iout≤3A		16	50	mV
ΔVout		BL1085-1.8V Vin-Vout=1.6V, 0≤Iout≤3A		16	50	mV
		BL1085-2.5V Vin-Vout=1.6V, 0≤Iout≤3A		16	50	mV
		BL1085-3.3V Vin-Vout=1.6V, 0≤Iout≤3A		16	50	mV
		BL1085-5.0V Vin-Vout=1.6V, 0≤Iout≤3A		16	50	mV

V _{in} -V _{out}	Dropout Voltage (note 3)	$\Delta V_{out}, \ \Delta V_{ref} = 1\%, \ I_{out} = 3A$		1.4		V
	Current Limit	V_{in} - V_{out} =3 V , T_j =25 $^{\circ}$ C		7		A
I _{limit}	Minimum Load Current (note 4)	BL1085-ADJ		3	10	mA
${f I_q}$	Quiescent Current	Vin=10V		5	10	mA
I_{Adj}	Adjust Pin Current (Adjustable Version)	2.85V ≤Vin≤4.25V, 10mA≤ Iout≤3A		45	120	uA
Ripple Rejection		F=120Hz,Cout=25uF(tan), Iout=3A,Vin-Vout=3V	60			dB
I _{change}	Adjust Pin Current Change	10mA≤Iout≤3A 1.5V≤Vin-Vout ≤6V		0.4	10	μΑ
	Temperature Stability	Iout=10mA, Vin-Vout=1.5V			0.5	%
$ heta_{J\!C}$	Thermal Resistance junction to case	TO-252 TO-263 TO-220		12.5 3 3		°C / W
ОТР	Over Temperature Protection			150		$^{\circ}$

Note1: Line Regulation and Load Regulation in Table1 are tested under constant junction temperature.

Note2: When load current varies between 0~3A and Vin-Vout ranges from 1.5V~6V at constant junction temperature, the parameter is satisfied the criterion in table. If temperature varies between $-40~C \le T_A \le 85~C$, it needs output current to be larger than 10mA to satisfy the criterion.

Note3: Dropout Voltage is the voltage difference between the input and output pin when the input voltage is minimum to maintain the lowest spec output voltage.

Dropout Voltage is the voltage difference between the input and output pin under Iout=3A and the following test condition:

- 1) Find out output voltage value (denoted as V_{out1}) when $V_{\text{in1}} = V_{\text{out}} + 1.5 V$
- 2) Decrease input voltage until output voltage is equal to 98.5% of V_{out1} , and denote the Vin and Vout as V_{in2} and V_{out2} .
- 3) $V_{dropout} = V_{in2} V_{out2}$.

Note4: Minimum Load Current is defined as the minimum output current necessary to maintain regulation. Specified output accuracy can be met when the output current exceeds the minimum load current (10mA) and the dropout voltage (V_{in} - V_{out}) lies between 1.5V and 6V.

BLOCK DIAGRAM

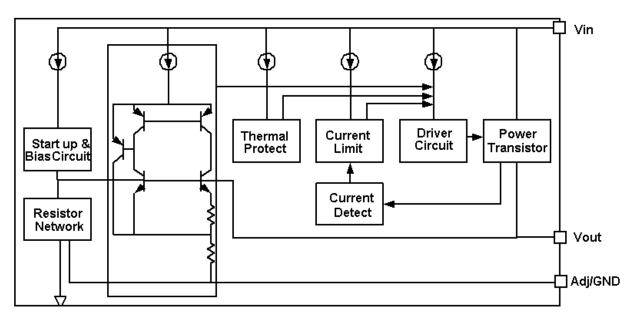


Fig 3. Block Diagram

DETAILED DESCRIPTION

BL1085 is a series of low dropout voltage three terminal regulators. Its circuit has a trimmed bandgap reference to ensure output voltage accuracy independent of temperature variance. On-chip thermal shutdown provides protection against overload and conditions as elevated ambient temperature.

Its application circuitry requires minimum number of external components. Both fixed voltage and adjustable voltage versions need input and output capacitors to assure output voltage stability. Any desired output voltage from 1.25V to 10V can be achieved with adjustable version by assigning proper values to two external resistors in its application circuitry (as shown in Fig.4, as R1, R2 are the two external resistors.).

TYPICAL APPLICATION

BL1085 has an adjustable version and fixed versions, Fig.4 shows their typical application circuitry. A 10uF tan capacitor connected between input and GND as bypass capacitor and a 22uF tan capacitor between output and GND are recommended for all application.

Using a bypass capacitor (C_{Adj}) between the adjust terminal and ground can improve ripple rejection. The bypass capacitor prevents ripple from being amplified in case the output voltage is increased. The impedance of C_{Adj} should be less than the resistance of R_1 to prevent ripple from being amplified at any frequency. As R_1 is normally in the range of $120\Omega\sim200\Omega$, the value of C_{Adj} should satisfy the following condition:

$$1/(2\pi^* \text{ Frequency}_{\text{Ripple}} *C_{\text{adj}}) < R_1$$

A 10 µF tan capacitor is recommended.

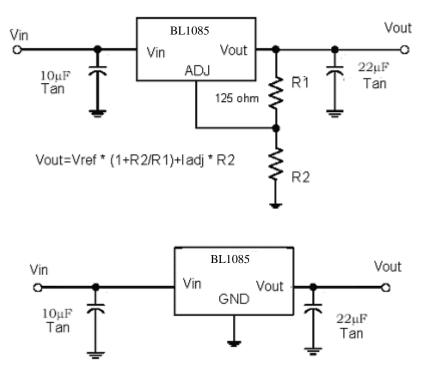
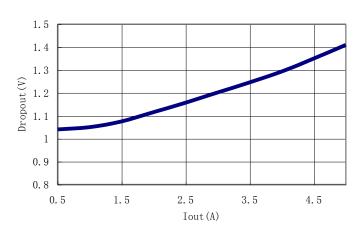


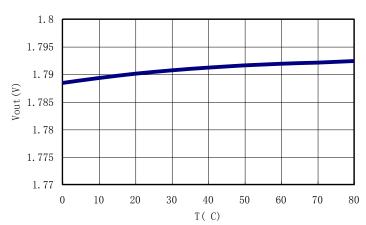
Fig 4. Typical Application of BL1085

EXPLANATION

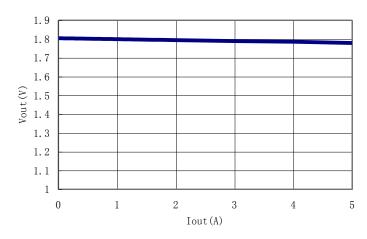
The output voltage of adjustable version satisfies this followed equation:

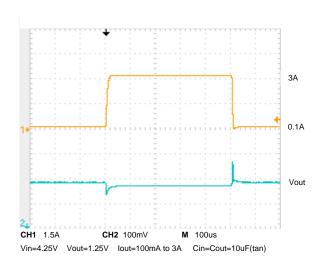

$$V_{out} = V_{Ref} \times (1 + R_2/R_1) + I_{Adj} \times R_2.$$

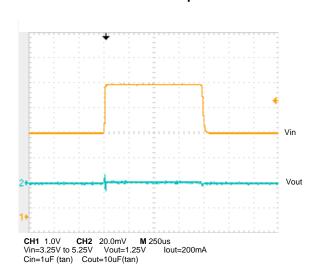
The second term $I_{Adj} \times R_2$ can be ignored since the adjustable pin current I_{Adj} (~ 50 μ A) is much less than the current through R_1 (~ 4mA).

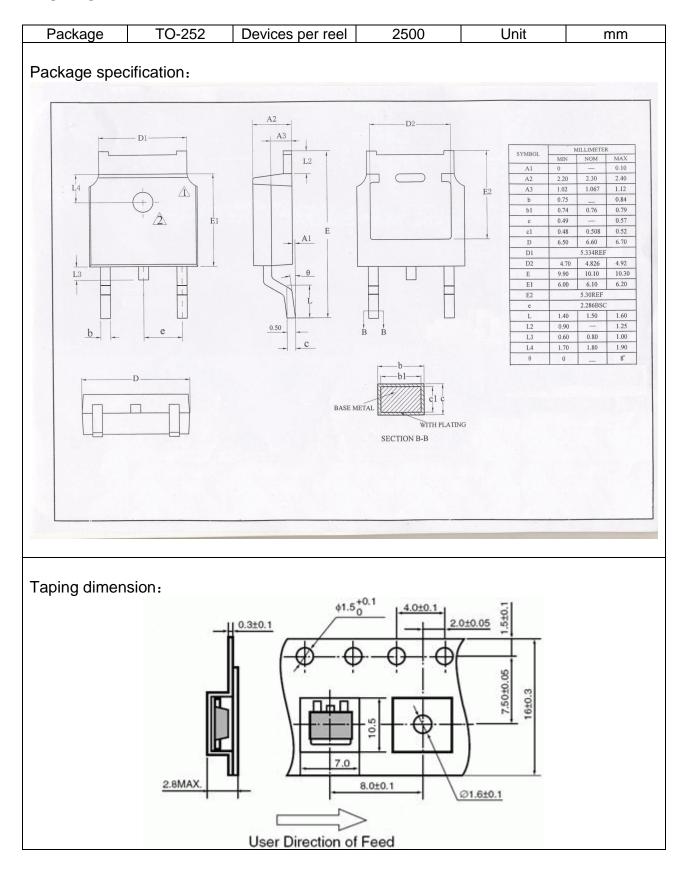

The value of R_1 is preferred in the range of $120\Omega{\sim}200\Omega$ and the total output current of the adjustable version of BL1085 needs to exceed 10mA to assure normal chip operation.

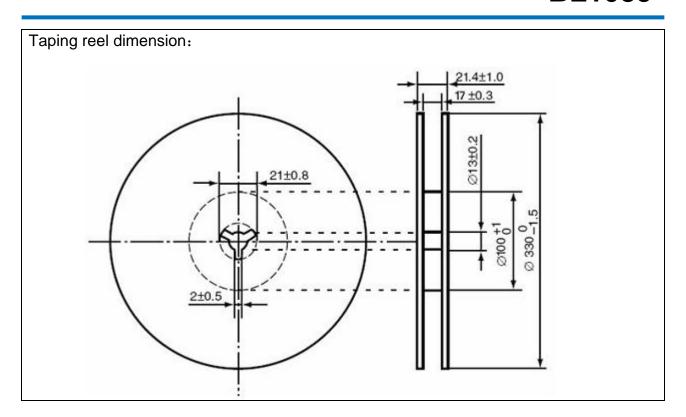
TYPICAL PERFORMANCE CHARACTERISTICS

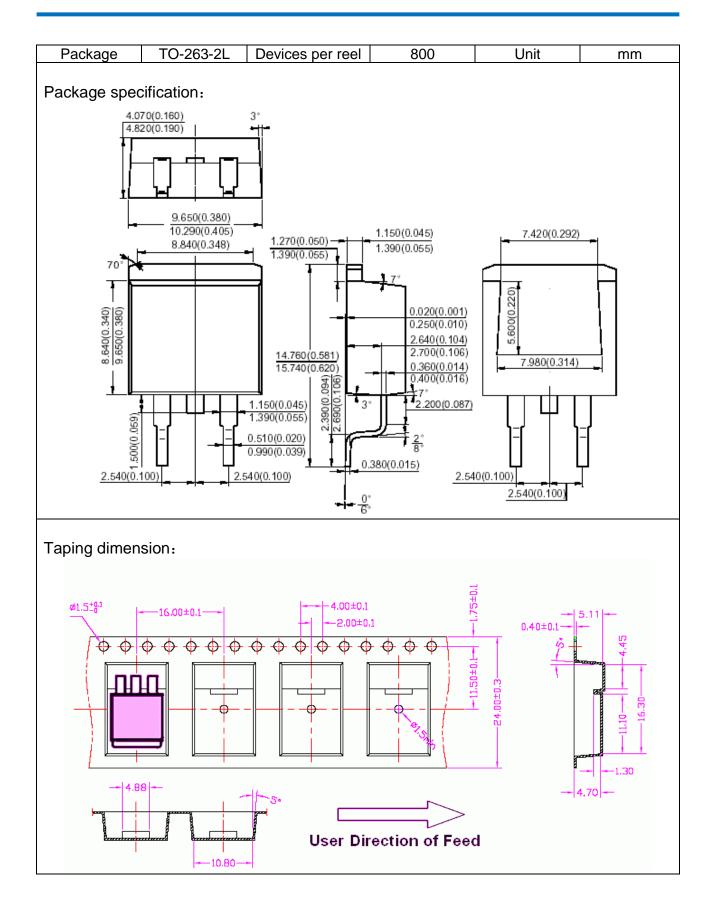

Dropout Voltage VS. Output Current

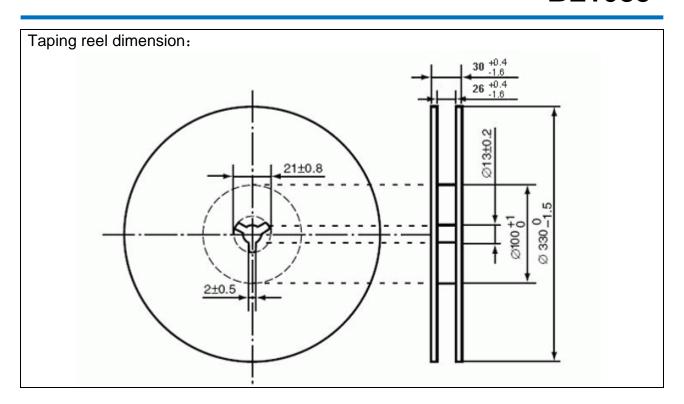

Output Voltage VS. Temperature

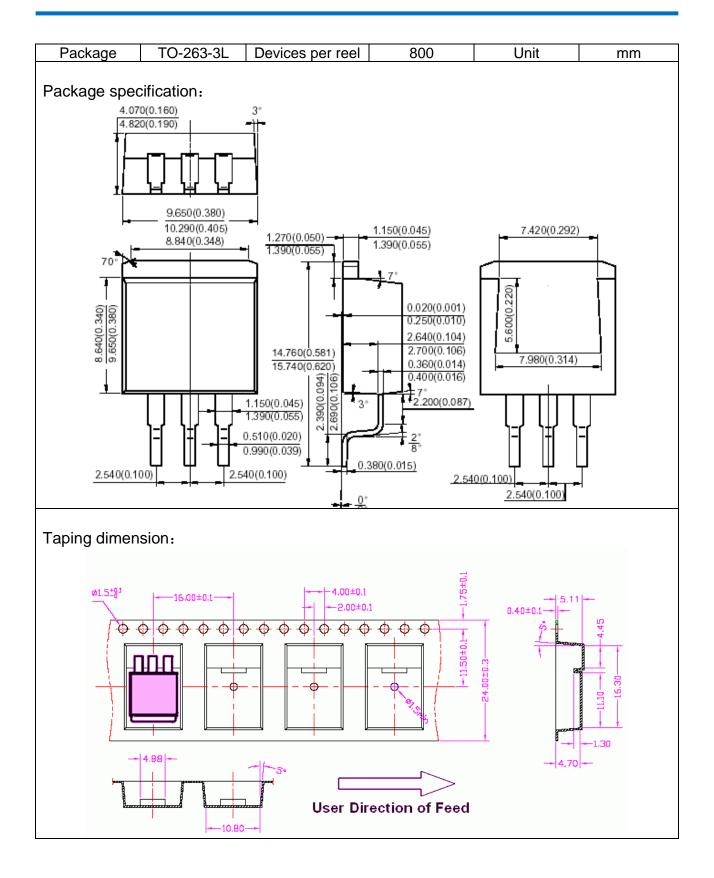

Output Voltage VS. Output Current


Load Transient Response




Line Transient Response




PACKAGE LINE

