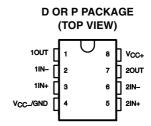
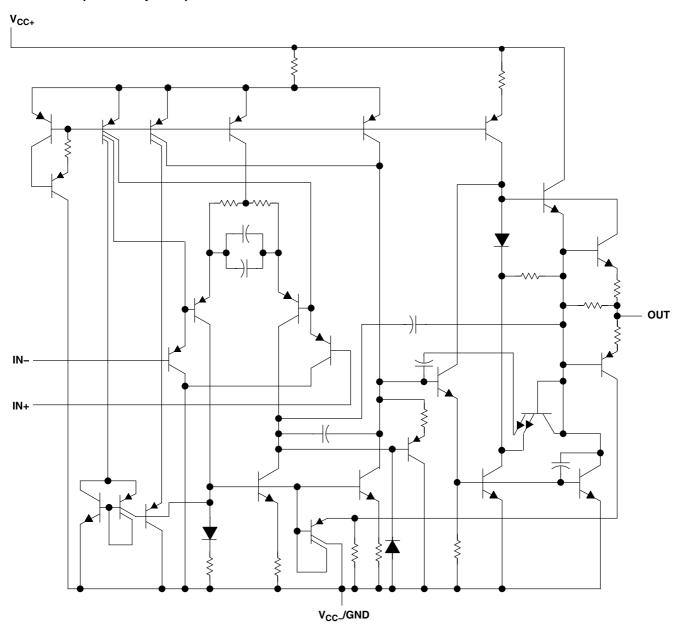

SLOS200G - OCTOBER 1997 - REVISED JULY 2003

- Wide Gain-Bandwidth Product . . . 4 MHz
- High Slew Rate . . . 13 V/μs
- Fast Settling Time . . . 1.1 μs to 0.1%
- Wide-Range Single-Supply Operation . . . 4 V to 36 V
- Wide Input Common-Mode Range Includes Ground (V_{CC}_)
- Low Total Harmonic Distortion . . . 0.02%
- Large-Capacitance Drive Capability . . . 10,000 pF
- Output Short-Circuit Protection




ORDERING INFORMATION

T _A	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP (P)	Tube of 25	TL3472CP	TL3472CP
0°C to 70°C	0010 (D)	Tube of 50	TL3472CD	0.4700
	SOIC (D)	Reel of 2500	TL3472CDR	3472C
	PDIP (P)	Tube of 25	TL3472IP	TL3472IP
–40°C to 105°C	COIC (D)	Tube of 50	TL3472ID	70470
	SOIC (D)	Reel of 2500	TL3472IDR	Z3472

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

schematic (each amplifier)

SLOS200G - OCTOBER 1997 - REVISED JULY 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage (see Note 1): V _{CC+}	18 V
V _{CC-}	
Differential input voltage, V _{ID} (see Note 2)	±36 V
Input voltage, V _I (any input)	
Input current, I _I (each input)	
Output current, I _O	
Total current into V _{CC+}	80 mA
Total current out of V _{CC}	80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	Unlimited
Package thermal impedance, θ _{JA} (see Notes 4 and 5): D package	
P package	85°C/W
Operating virtual junction temperature, T.J	150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC-} and V_{CC-} .
 - 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive input current can flow when the input is less than V_{CC} 0.3 V.
 - 3. The output can be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
 - 4. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

$V_{CC\pm}$	Supply voltage		4	36	٧	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Common mode involvellers	V _{CC} = 5 V	0	2.8		
V_{IC}	Common-mode input voltage	$V_{CC\pm} = \pm 15 \text{ V}$	-15	12.8	V	
_		TL3472C	0	70	°C	
T _A	Operating free-air temperature TL3472I		-40	105		

SLOS200G - OCTOBER 1997 - REVISED JULY 2003

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = $\pm 15~V$ (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	T _A	MIN	TYP†	MAX	UNIT		
			$V_{CC} = 5 V$		25°C		1.5	10		
V _{IO}	Input offset voltage				25°C		1.0	10	mV	
			$V_{CC} = \pm 15$	/	Full range [‡]			12		
$\alpha_{V_{IO}}$	Temperature coefficient of input offset voltage	$V_{IC} = 0,$ $V_{O} = 0,$	V _{CC} = ±15 \	/	Full range [‡]		10		μV/°C	
	lance to offer an accommon to	$R_S = 50 \Omega$	\/ \.	,	25°C		6	75	^	
I _{IO}	Input offset current		$V_{CC} = \pm 15$	/	Full range [‡]			300	nA	
١.	Innuit biog gurrant		\/ \ \ \ \ \ \ \ \ \ \ \ \ \	,	25°C		100	500	nA	
I _{IB}	Input bias current		vCC = ±15 v	$V_{CC} = \pm 15 \text{ V}$				700	ΠA	
Common-mode					25°C		–15 to 12.8		V	
V _{ICR}	input voltage range	$R_S = 50 \Omega$			Full range [‡]		–15 to 12.8		V	
	High-level output voltage	$V_{CC+} = 5 V$,	$V_{CC-} = 0$,	$R_L = 2 k\Omega$	25°C	3.7	4			
V _{OH}		$R_L = 10 \text{ k}\Omega$		25°C	13.6	14		V		
		$R_L = 2 k\Omega$			Full range [‡]	13.4				
		$V_{CC+} = 5 V$,	$V_{CC-} = 0$,	$R_L = 2 k\Omega$	25°C		0.1	0.3		
V _{OL}	Low-level output voltage	$R_L = 10 \text{ k}\Omega$			25°C		-14.7	-14.3	V	
		$R_L = 2 k\Omega$			Full range [‡]			-13.5		
۸	Large-signal differential	V _O = ±10 V,	P 210		25°C	25	100		V/mV	
A _{VD}	voltage amplification	VO = ±10 V,	$R_L = 2 k\Omega$		Full range [‡]	20			V/IIIV	
laa	Short-circuit output current	Source: V _{ID} = 1 V,	$V_O = 0$		25°C	-10	-34		mA	
los	Short-circuit output current	Sink: $V_{ID} = -1 V$,	$V_O = 0$		25 0	20	27		IIIA	
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}(min),$	$R_S = 50 \Omega$		25°C	65	97		dB	
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC} \pm /\Delta V_{IO})$	$V_{CC\pm} = \pm 13.5 \text{ V to } \pm$	16.5 V,	$R_S = 100 \Omega$	25°C	70	97		dB	
		V 0	No load		25°C		3.5	4.5		
Icc	Supply current (per channel)	$V_O = 0$,	No load		Full range [‡]		4.5	5.5	mA	
		$V_{CC+} = 5 \text{ V}, V_O = 2.5$	$5 \text{ V, V}_{CC-} = 0,$	No load	25°C		3.5	4.5		

[†] All typical values are at T_A = 25°C. ‡ Full range is 0°C to 70°C for the TL3472C device and -40°C to 105°C for the TL3472I device.

SLOS200G - OCTOBER 1997 - REVISED JULY 2003

operating characteristics, V_{CC^\pm} = ± 15 V, T_A = $25^{\circ}C$

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
SR+	Positive slew rate	$V_1 = -10 \text{ V to } 10 \text{ V},$	A _V = 1	8	10		V/μs
SR-	Negative slew rate	$R_L = 2 \text{ k}\Omega, C_L = 300 \text{ pF}$	$A_V = -1$		13		V/μs
	0.000	4 40 1/4	To 0.1%		1.1		
t _s	Settling time	$A_{VD} = -1$, 10-V step	To 0.01%		2.2		μs
V _n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 100 \Omega$		49		nV/√ Hz
In	Equivalent input noise current	f = 1 kHz	f = 1 kHz				pA/√ Hz
THD	Total harmonic distortion	$V_{O(PP)} = 2 \text{ V to } 20 \text{ V}, R_L = 2$		0.02		%	
GBW	Gain-bandwidth product	f =100 kHz	3	4		MHz	
BW	Power bandwidth	$V_{O(PP)} = 20 \text{ V}, R_L = 2 \text{ k}\Omega, A_V$	_{/D} = 1, THD = 5.0%		160		kHz
		5 010	C _L = 0		70		
φm	Phase margin	$R_L = 2 k\Omega$	C _L = 300 pF		50		deg
	Online are consider	D 010	C _L = 0		12		-ID
	Gain margin	$R_L = 2 k\Omega$	C _L = 300 pF	4		dB	
rį	Differential input resistance	$V_{IC} = 0$		150		MΩ	
Ci	Input capacitance	$V_{IC} = 0$			2.5		pF
	Channel separation	f = 10 kHz			101		dB
z _o	Open-loop output impedance	f = 1 MHz,	A _V = 1		20	_	Ω

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	_		Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TL3472CD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	3472C	Samples
TL3472CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	3472C	Samples
TL3472CP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TL3472CP	Samples
TL3472ID	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	Z3472	Samples
TL3472IDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	Z3472	Samples
TL3472IP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 105	TL3472IP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

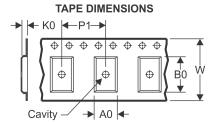
PACKAGE OPTION ADDENDUM

10-Dec-2020

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

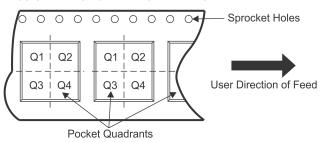
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TL3472:


Automotive: TL3472-Q1

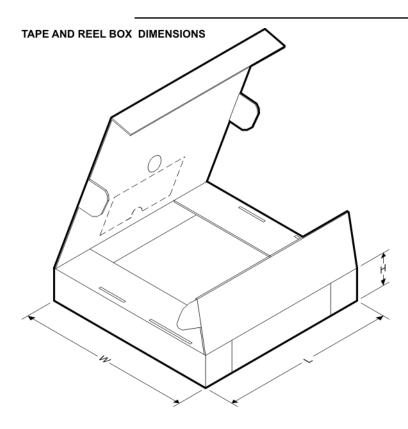
NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

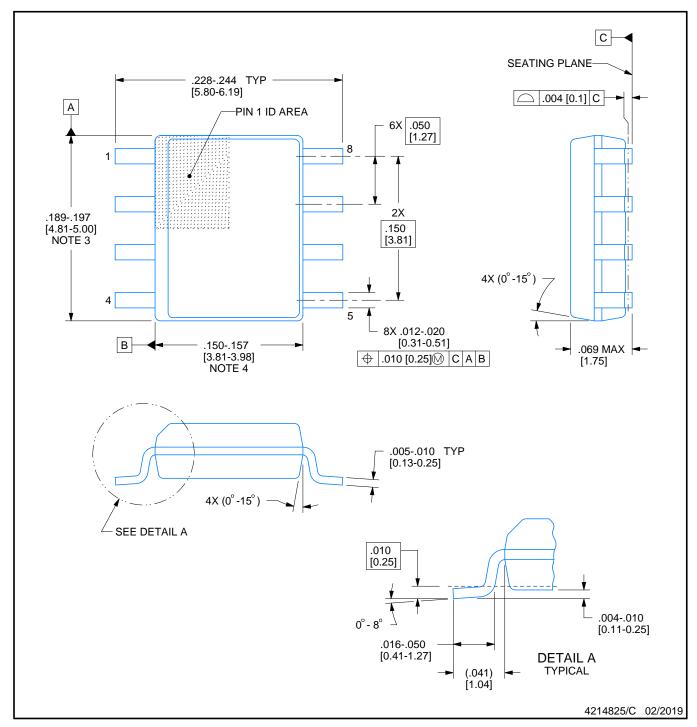


*All dimensions are nominal

"All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL3472CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL3472CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL3472IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL3472IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

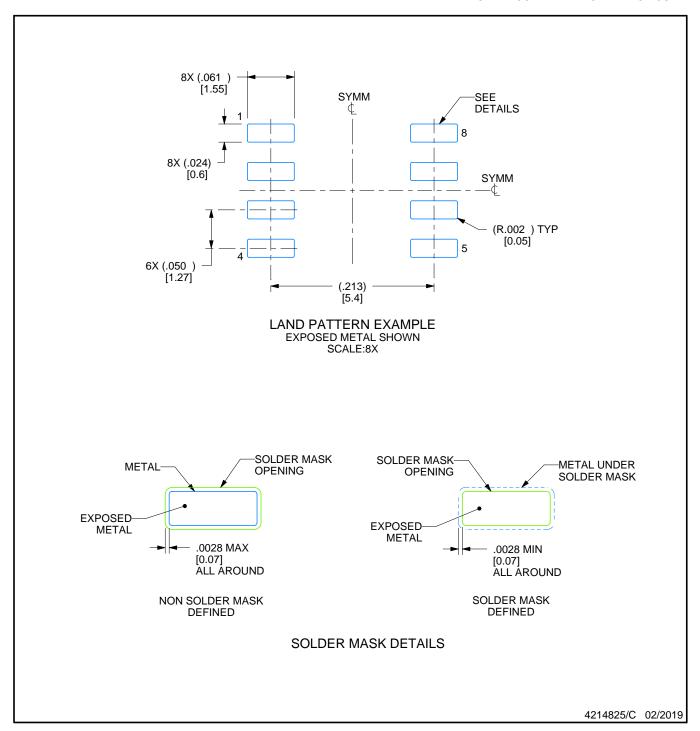
PACKAGE MATERIALS INFORMATION

23-Jul-2021



*All dimensions are nominal

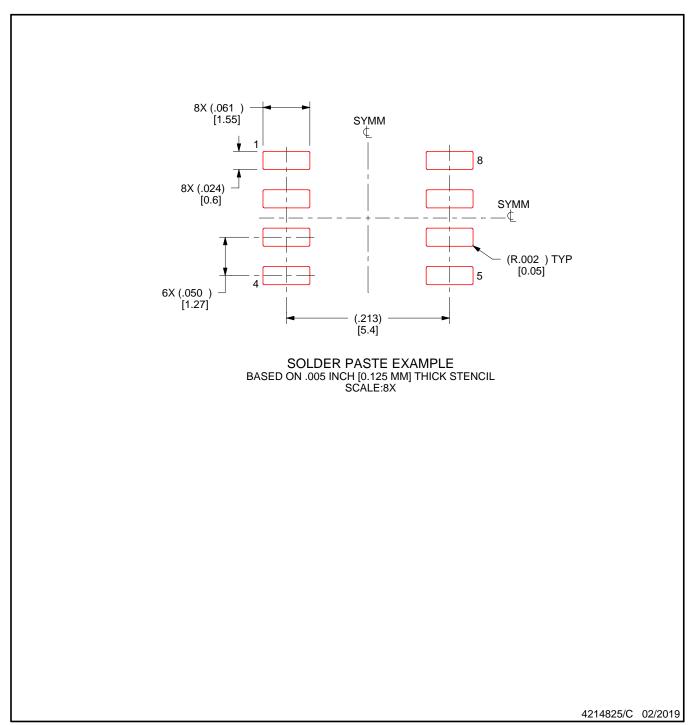
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL3472CDR	SOIC	D	8	2500	853.0	449.0	35.0
TL3472CDR	SOIC	D	8	2500	340.5	336.1	25.0
TL3472IDR	SOIC	D	8	2500	340.5	336.1	25.0
TL3472IDR	SOIC	D	8	2500	853.0	449.0	35.0


SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

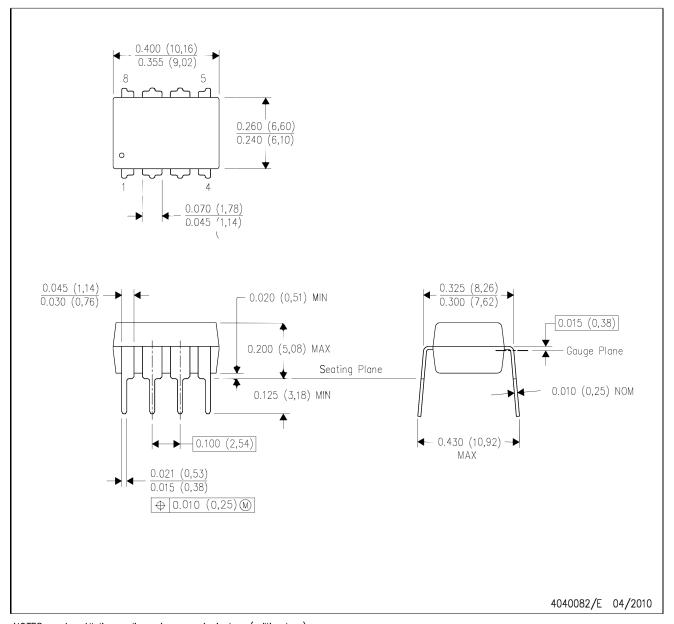


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A.

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.