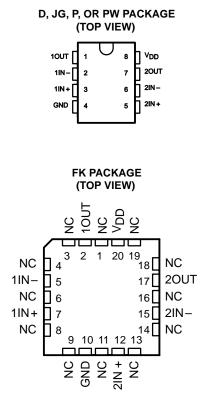
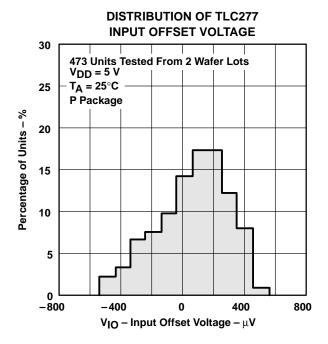
SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002


- Trimmed Offset Voltage: TLC277 ... 500 μV Max at 25°C, V_{DD} = 5 V
- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over Specified Temperature Range: 0°C to 70°C ... 3 V to 16 V -40°C to 85°C ... 4 V to 16 V -55°C to 125°C ... 4 V to 16 V
- Single-Supply Operation
- Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types)
- Low Noise . . . Typically 25 nV/\Hz at f = 1 kHz
- Output Voltage Range Includes Negative Rail
- High Input impedance . . . 10¹² Ω Typ
- ESD-Protection Circuitry
- Small-Outline Package Option Also Available in Tape and Reel
- Designed-In Latch-Up Immunity

description


The TLC272 and TLC277 precision dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching those of general-purpose BiFET devices.

These devices use Texas Instruments silicongate LinCMOS[™] technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these costeffective devices ideal for applications previously reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC272 (10 mV) to the high-precision TLC277 (500 μ V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

NC - No internal connection

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

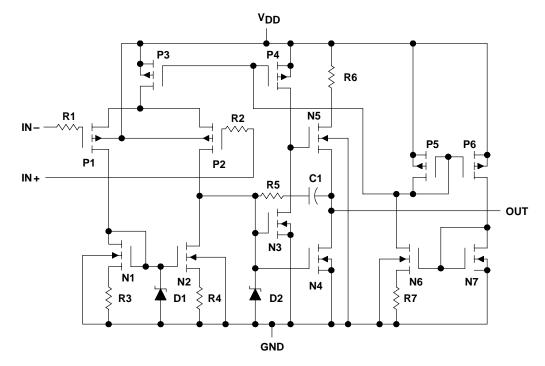
description (continued)

			AVAILABLE	OPTIONS			
т _А	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP (PW)	CHIP FORM (Y)
0°C to 70°c	500 μV 2 mV 5 mV 10mV	TLC277CD TLC272BCD TLC272ACD TLC272CD			TLC277CP TLC272BCP TLC272ACP TLC272CP	— — — TLC272CPW	— — — TLC272Y
−40°C to 85°C	500 μV 2 mV 5 mV 10 mV	TLC277ID TLC272BID TLC272AID TLC272ID			TLC277IP TLC272BIP TLC272AIP TLC272IP		

AVAILARIE ORTIONS

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC277CDR).

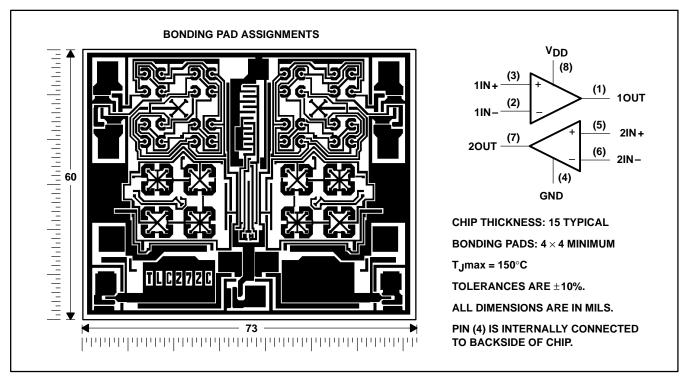
In general, many features associated with bipolar technology are available on LinCMOSTM operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.


A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up.

The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

equivalent schematic (each amplifier)

TLC272Y chip information

This chip, when properly assembled, displays characteristics similar to the TLC272C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note 1) Differential input voltage, V _{ID} (see Note 2)	±V _{DD}
Input voltage range, V _I (any input)	–0.3 v to v _{DD}
Input current, I _I	
output current, I _O (each output)	±30 mA
Total current into V _{DD}	45 mA
Total current out of GND	45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total dissipation	See Dissipation Rating Table
Continuous total dissipation Operating free-air temperature, T _A : C suffix	
Operating free-air temperature, T _A : C suffix	
Operating free-air temperature, T _A : C suffix I suffix	0°C to 70°C
Operating free-air temperature, T _A : C suffix I suffix M suffix	
Operating free-air temperature, T _A : C suffix I suffix M suffix Storage temperature range	0°C to 70°C −40°C to 85°C −55°C to 125°C −65°C to 150°C
Operating free-air temperature, T _A : C suffix I suffix M suffix Storage temperature range Case temperature for 60 seconds: FK package	
Operating free-air temperature, T _A : C suffix I suffix M suffix Storage temperature range	0°C to 70°C -40°C to 85°C -55°C to 125°C -55°C to 125°C -65°C to 150°C 260°C or PW package

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN-.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	N/A
FK	1375 mW	11 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	N/A
PW	525 mW	4.2 mW/°C	336 mW	N/A	N/A

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX		
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
Supply voltage, VDD		3	16	4	16	4	16	V	
	$V_{DD} = 5 V$	-0.2	3.5	-0.2	3.5	0	3.5		
Common-mode input voltage, V_{IC}	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	V	
Operating free-air temperature, T_A		0	70	-40	85	-55	125	°C	

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST COND	TIONS	т _А †	TLC272 TLC272	C, TLC2 BC, TLC		UNIT
						MIN	TYP	MAX	
		TI 00700	V _O = 1.4 V,	VIC = 0,	25°C		1.1	10	
		TLC272C	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			12	
		TI 00704.0	V _O = 1.4 V,	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$	25°C		0.9	5	mV
	hand affective line of	TLC272AC			Full range			6.5	
VIO	Input offset voltage	TI 0070D0	V _O = 1.4 V,	V _{IC} = 0,	25°C		230	2000	
		TLC272BC	$R_{S} = 50 \Omega$,	$R_L = 10 k\Omega$	Full range			3000	
		TI 00770	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	μV
		TLC277C	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			1500	
α _{VIO}	Temperature coefficient of input	offset voltage			25°C to		1.8		μV/∘C
~00	Temperature coefficient of input	oliset voltage			70°C				μν/Ο
IIO	Input offset current (see Note 4)			25°C		0.1	60	pА
0)	V _O = 2.5 V,	V _{IC} = 2.5 V	70°C		7	300	p/ (
I _{IB}	Input bias current (see Note 4)		VU = 2.0 V,	10 - 2.0 1	25°C		0.6 60		pА
ΊΒ					70°C		40	600	РЛ
					0500	-0.2	-0.3		
	Common mode input veltage re	222			25°C	to 4	to 4.2		V
VICR	Common-mode input voltage ra (see Note 5)	linge				-0.2			
	, , ,				Full range	to			V
						3.5			
					25°C	3.2	3.8		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	0°C	3	3.8		V
					70°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	5	23		
AVD	Large-signal differential voltage	amplification	V_{O} = 0.25 V to 2 V,	$R_L = 10 \ k\Omega$	0°C	4	27		V/mV
					70°C	4	20		
					25°C	65	80		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		0°C	60	84		dB
					70°C	60	85		
	0 1 1 1 1 1				25°C	65	95		
k SVR	Supply-voltage rejection ratio		$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	94		dB
		ΔVDD/ΔVIO)		v, vu – 1.4 v	70°C	60	96		
					25°C		1.4	3.2	†
IDD	Supply current (two amplifiers)		$V_{O} = 2.5 V$, V_{IC} No load	V _{IC} = 2.5 V,	0°C		1.6	3.6	mA
			NU IUau		70°C	İ	1.2	2.6	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	т _А †	TLC272 TLC272	C, TLC2 BC, TLC		UNIT
					~	MIN	TYP	MAX	
		-	V _O = 1.4 V,	VIC = 0,	25°C		1.1	10	
		TLC272C	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			12	.,
		TI 007040	V _O = 1.4 V,	VIC = 0,	25°C		0.9	5	mV
.,	· · · · ·	TLC272AC	$R_S = 50 \Omega$,	$R_L = 10 \ k\Omega$	Full range			6.5	
VIO	Input offset voltage	TI 0070D0	V _O = 1.4 V,	VIC = 0,	25°C		290	2000	
		TLC272BC	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			3000	.,
		TI 00770	V _O = 1.4 V,	V _{IC} = 0,	25°C		250	800	μV
		TLC277C	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			1900	
0,40	Temperature coefficient of inp	ut offset voltage			25°C to		2		μV/°C
α _{VIO}		ut onset voltage			70°C		Z		μν/ Ο
lio	Input offset current (see Note	4)			25°C		0.1	60	pА
IIO	liput onset current (see Note	4)	V _O = 5 V,	V _{IC} = 5 V	70°C		7	300	рл
lin	Input bias current (see Note 4	N .	$v_0 = 5 v$,	VIC = 5 V	25°C		0.7	60	pА
IΒ	Input bias current (see Note 2	5)			70°C		50	600	рА
						-0.2	-0.3		
	2				25°C	to 9	to 9.2		V
VICR	Common-mode input voltage (see Note 5)	range				-0.2	5.2		
	(Full range	to			V
					-	8.5			
					25°C	8	8.5		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	0°C	7.8	8.5		V
					70°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		V _{ID} = -100 mV,	$I_{OL} = 0$	0°C		0	50	mV
					70°C		0	50	
					25°C	10	36		
AVD	Large-signal differential voltage	ge amplification	$V_{O} = 1 V \text{ to } 6 V,$	RL = 10 kΩ	0°C	7.5	42		V/mV
					70°C	7.5	32		
					25°C	65	85		
CMRR	Common-mode rejection ratio)	VIC = VICRmin		0°C	60	88		dB
					70°C	60	88		
					25°C	65	95		
k SVR	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$		$V_{DD} = 5 V \text{ to } 10 V,$	V _O = 1.4 V	0°C	60	94		dB
				, v∪ = 1.4 v	70°C	60	96		
					25°C	1	1.9	4	
IDD	Supply current (two amplifiers		$V_{O} = 5 V$,	V _{IC} = 5 V,	0°C		2.3	4.4	mA
			No load		70°C	Ì	1.6	3.4	

[†]Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER		TEST COND	ITIONS	τ _A †		2I, TLC2 2BI, TL(UNIT
						MIN	TYP	MAX	-
		TI 00701	V _O = 1.4 V,	VIC = 0,	25°C		1.1	10	
		TLC272I	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			13	.,
		71 007041	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
.,	1 . 11 . 11	TLC272AI	R _S = 50 Ω,	RL = 10 kΩ	Full range			7	
VIO	Input offset voltage		V _O = 1.4 V,	VIC = 0,	25°C		230	2000	
		TLC272BI	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			3500	
		TI 00771	V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	μV
		TLC277I	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			2000	
ανιο	Temperature coefficient of inp	out offset voltage			25°C to		1.8		μV/°C
~vi0		out onset voltage			85°C		1.0		μν/Ο
IIO	Input offset current (see Note	4)			25°C		0.1	60	pА
10		, ,,	V _O = 2.5 V,	V _{IC} = 2.5 V	85°C		24	15	P/1
I _{IB}	Input bias current (see Note	4)	V() = 2.0 V,	10 - 2.0 1	25°C		0.6 60		pА
ЧЫ		*)			85°C		200	35	pr
					0500	-0.2	-0.3		
	Common mode input veltage	*0.0.00			25°C	to 4	to 4.2		V
VICR	Common-mode input voltage (see Note 5)	nage lange				-0.2			
	(Full range	to			V
					-	3.5			
			25°C	3.2	3.8				
Vон	High-level output voltage		V _{ID} = 100 mV,	R _L = 10 kΩ	-40°C	3	3.8		V
					85°C	3	3.8		
					25°C		0	50	
VOL	Low-level output voltage		V _{ID} = -100 mV,	$I_{OL} = 0$	-40°C		0	50	mV
					85°C		0	50	
					25°C	5	23		
AVD	Large-signal differential volta	ge amplification	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	−40°C	3.5	32		V/mV
					85°C	3.5	19		
					25°C	65	80		
CMRR	Common-mode rejection ratio	D	$V_{IC} = V_{ICR}min$		−40°C	60	81		dB
					85°C	60	86		
	Our a base of the state of the state				25°C	65	95		
^k SVR		Supply-voltage rejection ratio		V _O = 1.4 V	-40°C	60	92		dB
		ΔV/dd/2)			85°C	60	96		
					25°C		1.4	3.2	
IDD	Supply current (two amplifiers	urrent (two amplifiers)	$V_{O} = 2.5 V,$ V_{IC} No load	V _{IC} = 2.5 V,	-40°C		1.9	4.4	mA
					85°C		1.1	2.4	

[†] Full range is -40° C to 85° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E – OCTOBER 1987 – REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST COND	TIONS	т _А †		2I, TLC2 2BI, TL(UNIT
						MIN	TYP	MAX	-
		-	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC272I	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			13	
		TI 007041	V _O = 1.4 V,	V _{IC} = 0, R _L = 10 kΩ	25°C		0.9	5	mV
.,	land affective linear	TLC272AI	R _S = 50 Ω,		Full range			7	
VIO	Input offset voltage	TI 0070DI	V _O = 1.4 V,	VIC = 0,	25°C		290	2000	
		TLC272BI	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			3500	
		TI 00771	$V_{0} = 1.4 V,$ $V_{1C} = 0,$ $25^{\circ}C$	25°C		250	800	μV	
		TLC277I	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			2900	
0,40	Temperature coefficient of inp	it offset voltage			25°C to		2		μV/°C
α _{VIO}	remperature coemcient of mp	at onset voltage			85°C		Z		μν/ C
lio	Input offset current (see Note	4)			25°C		0.1	60	pА
IIO	וויףטו טווספו כטוופווג (ספפ אטופ	-,	V _O = 5 V,	V _{IC} = 5 V	85°C		26	1000	μn
lun	Input bias current (see Note 4	N N	$v_0 = 5 v$,	VIC = 5 V	25°C	0.7 60		60	pА
IB	וויףטו טומס כטוויפווו (ספיפ ואטנפ 4)			85°C		220	2000	ρя
					-0.2	-0.3			
					25°C	to 9	to 9.2		V
VICR	Common-mode input voltage	range				-	9.2		
	(see Note 5)			Full range	-0.2 to			V	
					r un runge	8.5			•
					25°C	8	8.5		
∨он	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	-40°C	7.8	8.5		V
•••					85°C	7.8	8.5		1
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	-40°C		0	50	mV
-				-	85°C		0	50	
					25°C	10	36		
Avd	Large-signal differential voltag	e amplification	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	−40°C	7	46		V/mV
	·	-		-	85°C	7	31		
					25°C	65	85		
CMRR	Common-mode rejection ratio		$V_{IC} = V_{ICR}min$		-40°C	60	87		dB
	·				85°C	60	88		
					25°C	65	95		
^k SVR	Supply-voltage rejection ratio		V _{DD} = 5 V to 10 V,	V _O = 1.4 V	-40°C	60	92		dB
	$(\Delta \Lambda DD / \Delta \Lambda IO)$	Δν _{DD} /Δνιο)		-	85°C	60	96		
			1		25°C		1.4	4	
IDD	Supply current (two amplifiers)	$V_{O} = 5 V$,	V _{IC} = 5 V,	-40°C		2.8	5	mA
			No load	· ic - · ·,	85°C		1.5	3.2	

[†] Full range is -40° C to 85° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

DADAMETED		TEST COND		T ₄ t	TLC27		277M	UNIT
PARAMETER		TEST COND	THONS	'A'	MIN	TYP	MAX	UNIT
		V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
	TLC272IVI	R _S = 50 Ω,	$R_L = 10 \text{ k}\Omega$	Full range			12	mV
Input offset voltage		V _O = 1.4 V,	V _{IC} = 0,	25°C		200	500	
	TLC277M	R _S = 50 Ω,	$R_L = 10 k\Omega$	Full range			3750	μV
Temperature coefficient of input ovoltage	offset			25°C to 125°C		2.1		μV/° (
lagest offend summert (as a Nata 4)				25°C		0.1	60	pА
Input offset current (see Note 4)				125°C		1.4	15	nA
		VO = 2.5 V	VIC = 2.5 V	25°C		0.6	60	pА
Input bias current (see Note 4)				125°C		9	35	nA
					0	-0.3		
				25°C	to	to		V
	ge		_			4.2		
(see Note 5)					-			V
				Full range				V
				25°C		3.8		
High-level output voltage		$V_{1D} = 100 mV_{10}$	$R_{\rm L} = 10 \rm kO$					V
high level output voltage		VID = 100 mV,	NL = 10 N32					v
					0		50	
l ow-level output voltage		\/ 100 m\/	$ \alpha = 0$			-		mV
Low-level output voltage		VID = - 100 mV,	IOL = 0			-		IIIV
					5	-	00	
l arge-signal differential voltage a	molification	$V_{0} = 0.25 V to 2 V$	$R_{\rm L} = 10 \rm kO$					۷/m۱
	implification	VO = 0.20 V 10 2 V	NL = 10 N32					v/111
Common-mode rejection ratio				-				dB
								uD
Supply-voltage rejection ratio		$V_{DD} = 5 V to 10 V$	$V_{0} = 1.4 V_{0}$					dB
$(\Delta V_{DD}/\Delta V_{IO})$		vDD = 5 v to 10 v,	V _O = 1.4 V					uВ
					00	-	30	
Supply current (two amplificre)	v	V _O = 2.5 V,	V _{IC} = 2.5 V,					mA
		No load	-	-000		2	5	- IIIA
	voltage Input offset current (see Note 4) Input bias current (see Note 4) Common-mode input voltage ran (see Note 5) High-level output voltage Low-level output voltage Large-signal differential voltage a Common-mode rejection ratio	Input offset voltage TLC272M Temperature coefficient of input offset TLC277M Input offset current (see Note 4) Input bias current (see Note 4) Common-mode input voltage range (see Note 5) Input bias current (see Note 4) High-level output voltage Input sea Current (see Note 4) Low-level output voltage Input sea Current (see Note 4) Common-mode input voltage Input sea Current (see Note 4) Supply-level output voltage Input sea Current (see Note 4)	$Input offset voltage \frac{TLC272M}{TLC277M} = 1.4 V, R_S = 50 \Omega, V_O = 2.5 V Input offset current (see Note 4) V_O = 2.5 V Input bias current (see Note 4) V_O = 2.5 V Input bias current (see Note 4) V_{ID} = 100 \text{ mV}, V_O = 0.25 V \text{ to } 2 V Common-mode rejection ratio V_O = 0.25 V \text{ to } 2 V Common-mode rejection ratio V_O = 0.25 V \text{ to } 2 V$	$\frac{\text{TLC272M}}{\text{TLC277M}} \bigvee_{Q = 1.4 \text{ V}, \\RS = 50 \Omega, \\RL = 10 \text{ k}\Omega} \frac{\text{V}_{Q} = 1.4 \text{ V}, \\RS = 50 \Omega, \\RL = 10 \text{ k}\Omega} \frac{\text{V}_{Q} = 1.4 \text{ V}, \\RS = 50 \Omega, \\RL = 10 \text{ k}\Omega} \frac{\text{V}_{Q} = 1.4 \text{ V}, \\RS = 50 \Omega, \\RL = 10 \text{ k}\Omega} \frac{\text{V}_{Q} = 0, \\RL = 10 \text{ k}\Omega} \frac{\text{V}_{Q} = 0, \\RL = 10 \text{ k}\Omega} \frac{\text{V}_{Q} = 2.5 \text{ V}} \frac{\text{V}_{Q} = 2.5 \text$	$ \begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	PARAMETER TEST CONDITIONS IA ^I MIN Input offset voltage $TLC272M$ $V_O = 1.4 V, R_S = 50 \Omega, R_L = 10 k\Omega$ $FUI range$ CC Input offset voltage $TLC277M$ $V_O = 1.4 V, R_S = 50 \Omega, R_L = 10 k\Omega$ $FUI range$ CC Temperature coefficient of input offset $V_O = 1.4 V, R_S = 50 \Omega, R_L = 10 k\Omega$ $FUI range$ CC Input offset current (see Note 4) $V_O = 2.5 V$ $V_I C = 2.5 V$ IZS^{CC} IZS^{CC} Input bias current (see Note 4) $V_O = 2.5 V$ $V_I C = 2.5 V$ IZS^{CC} IZS^{CC} Common-mode input voltage range $V_O = 2.5 V$ $V_I C = 2.5 V$ IZS^{CC} IZS^{CC} Low-level output voltage $V_I D = 100 \text{ mV}$, $R_L = 10 \text{ k}\Omega$ IZS^{CC} IZS^{CC} IZS^{CC} Low-level output voltage $V_I D = -100 \text{ mV}$, $R_L = 10 \text{ k}\Omega$ IZS^{CC} IZS^{CC} IZS^{CC} Large-signal differential voltage amplification $V_O = 0.25 V \text{ to } 2 V$ $R_L = 10 \text{ k}\Omega$ IZS^{CC} IZS^{CC} Common-mode rejection ratio $V_I C = V_I CR min$ IZS^{CC} IZS^{CC} $IZS^$	PARAMETER TEST CONDITIONS IA' MIN TYP Input offset voltage $TLC272M$ $V_0 = 1.4 V, R_S = 50 \Omega, R_L = 10 k\Omega$ $25^\circ C$ 2100 TLC277M $V_0 = 1.4 V, R_S = 50 \Omega, R_L = 10 k\Omega$ $Full range$ $V_{UI} = 0$ $Full range$ Temperature coefficient of input offset voltage $TLC277M$ $V_0 = 1.4 V, R_S = 50 \Omega, R_L = 10 k\Omega$ $Full range$ $V_{UI} = 0$ Input offset current (see Note 4) $V_0 = 2.5 V$ $V_{IC} = 0.5 V$ $V_{IC} = 2.5 V$	$ \begin{array}{ c c c c c } & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

[†] Full range is –55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST COND	ITIONS	T _A †		2M, TLC		UNIT
						MIN	TYP	MAX	UNIT
		TLC272M	V _O = 1.4 V,	$V_{IC} = 0,$	25°C		1.1	10	mV
VIO	Input offset voltage	1027210	R _S = 50 Ω,	$R_L = 10 \ k\Omega$	Full range			12	IIIV
10	input onset voltage	TLC277M	V _O = 1.4 V,	$V_{IC} = 0,$	25°C		250	800	μV
		16027710	R _S = 50 Ω,	$R_L = 10 \text{ k}\Omega$	Full range			4300	μv
αΛΙΟ	Temperature coefficient of input voltage	offset			25°C to 125°C		2.2		μV/°C
l.a	Input offect ourrent (coo Note 4)				25°C		0.1	60	pА
IIO	Input offset current (see Note 4)				125°C		1.8	15	nA
	leave the summer (see Note 4)		V _O = 5 V,	V _{IC} = 5 V	25°C		0.7	60	pА
IВ	Input bias current (see Note 4)				125°C		10	35	nA
	Common-mode input voltage ra	nae			25°C	0 to 9	-0.3 to 9.2		V
VICR	(see Note 5)	ange			Full range	0 to 8.5			V
					25°C	8	8.5		
∨он	High-level output voltage		V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	−55°C	7.8	8.5		V
					125°C	7.8	8.4		
					25°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	−55°C		0	50	mV
					125°C		0	50	1
					25°C	10	36		
Avd	Large-signal differential voltage amplification		$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	−55°C	7	50		V/mV
	ampinoation				125°C	7	27		
					25°C	65	85		
CMRR	Common-mode rejection ratio		VIC = VICRmin		−55°C	60	87		dB
					125°C	60	86		
	O I I I I I I I I I I				25°C	65	95		
^k SVR	Supply-voltage rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$		V _{DD} = 5 V to 10 V,	V _O = 1.4 V	−55°C	60	90		dB
					125°C	60	97		
					25°C		1.9	4	
IDD	Supply current (two amplifiers)		V _O = 5 V, No load	V _{IC} = 5 V,	−55°C		3	6	mA
					125°C		1.3	2.8	

[†] Full range is -55° C to 125° C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

	DADAMETED	TEAT OON		Т	LC272Y		
	PARAMETER	TEST CON	TEST CONDITIONS			MAX	UNIT
V _{IO}	Input offset voltage	V _O = 1.4 V, R _S = 50 Ω,	V _{IC} = 0, R _L = 10 kΩ		1.1	10	mV
ανιο	Temperature coefficient of input offset voltage				1.8		μV/°C
١O	Input offset current (see Note 4)	N/ 0.5.V/			0.1		pА
IIB	Input bias current (see Note 4)	V _O = 2.5 V,	V _{IC} = 2.5 V		0.6		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 4	-0.3 to 4.2		V
VOH	High-level output voltage	V _{ID} = 100 mV,	$R_L = 10 \text{ k}\Omega$	3.2	3.8		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$		0	50	mV
AVD	Large-signal differential voltage amplification	V_{O} = 0.25 V to 2 V	$R_L = 10 \ k\Omega$	5	23		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	80		dB
k SVR	Supply-voltage rejection ratio ($\Delta V_{DD} / \Delta V_{IO}$)	V _{DD} = 5 V to 10 V,	V _O = 1.4 V	65	95		dB
IDD	Supply current (two amplifiers)	V _O = 2.5 V, No load	V _{IC} = 2.5 V,		1.4	3.2	mA

electrical characteristics, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually.

electrical characteristics, V_{DD} = 10 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEST CON		Т	LC272Y		UNIT
	PARAMETER	TEST CONI	DITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 1.4 V, R _S = 50 Ω,	$V_{IC} = 0,$ $R_L = 10 \text{ k}\Omega$		1.1	10	mV
α_{VIO}	Temperature coefficient of input offset voltage				1.8		μV/°C
lio	Input offset current (see Note 4)		У. Б.У.		0.1		pА
IIB	Input bias current (see Note 4)	V _O = 5 V,	V _{IC} = 5 V		0.7		pА
VICR	Common-mode input voltage range (see Note 5)			-0.2 to 9	-0.3 to 9.2		V
VOH	High-level output voltage	V _{ID} = 100 mV,	$R_L = 10 \ k\Omega$	8	8.5		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$	IOT = 0		0	50	mV
AVD	Large-signal differential voltage amplification	$V_{O} = 1 V \text{ to } 6 V,$	$R_L = 10 \ k\Omega$	10	36		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		65	85		dB
k SVR	Supply-voltage rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$	V _{DD} = 5 V to 10 V,	V _O = 1.4 V	65	95		dB
IDD	Supply current (two amplifiers)	V _O = 5 V, No load	V _{IC} = 5 V,		1.9	4	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

SLOS091E – OCTOBER 1987 – REVISED FEBRUARY 2002

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	NDITIONS	та	TLC272 TLC272			UNIT
				MIN	TYP	MAX		
				25°C		3.6		
			VIPP = 1 V	0°C		4		
0.0		$R_L = 10 k\Omega$,		70°C		3		Mhia
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/µs
		g	VIPP = 2.5 V	0°C		3.1		
				70°C		2.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz
		V _O = V _{OH} , R _L = 10 kΩ,	_	25°C		320		
вом	Maximum output-swing bandwidth			0°C		340		kHz
			See l'igure i	70°C		260		
				25°C		1.7		
В ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 pF,	0°C		2		MHz
		Occ right o		70°C		1.3		
			(-	25°C		46°		
[¢] m	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 3	0°C		47°		
		ο _L = 20 μ,	occ rigule 5	70°C		43°		

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	NDITIONS	TA	TLC2720 TLC272			UNIT
					MIN	TYP	MAX	
				25°C		5.3		
			V _{IPP} = 1 V	0°C		5.9		
0.0	Clow rate of white gain	$R_{L} = 10 k\Omega$,		70°C		4.3		Mue
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		4.6		V/µs
		eee nigale n	VIPP = 5.5 V	0°C		5.1		
				70°C		3.8		
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz
	Maximum output-swing bandwidth		C _L = 20 pF, See Figure 1	25°C		200		
Вом		$V_O = V_{OH},$ R _L = 10 k Ω ,		0°C		220		kHz
		$R_{L} = 10 \text{ Ks}_{2}$	Occ rigure r	70°C		140		
				25°C		2.2		
В ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 pF,	0°C		2.5		MHz
		See Figure 5		70°C		1.8		
				25°C		49°		
φm	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 3	0°C		50°		
		ο _L = 20 μ,	See Figure 5	70°C		46°		

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

	PARAMETER	TEST CO	NDITIONS	TA	TLC272 TLC272	21, TLC2 2BI, TL(UNIT
				MIN	TYP	MAX		
				25°C		3.6		
			VIPP = 1 V	-40°C		4.5		
00		$R_L = 10 k\Omega$,		85°C		2.8		14.0
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/µs
		eee rigare r	VIPP = 2.5 V	-40°C		3.5		
				85°C		2.3		
v _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz
		$V_{O} = V_{OH},$ $R_{I} = 10 k\Omega,$	_	25°C		320		
Вом	Maximum output-swing bandwidth		C _L = 20 pF, See Figure 1	-40°C		380		kHz
		$R_{L} = 10 Rs_{2}$	See ligure l	85°C		250		1
				25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 pF,	-40°C		2.6		MHz
		See Figure 3		85°C		1.2		1
				25°C		46°		
φm	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 3	-40°C		49°		1
		Ο <u>Γ</u> = 20 pF,	See Figure 5	85°C		43°		1

operating characteristics at specified free-air temperature, V_{DD} = 5 V

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER	TEST CO	NDITIONS	TA	TLC272I, TLC272AI, TLC272BI, TLC277I			UNIT
				MIN	TYP	MAX		
				25°C		5.3		
			VIPP = 1 V	-40°C		6.8		
0.0		$R_L = 10 k\Omega$,		85°C		4		N// -
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		4.6		V/µs
		eee rigale r	V _{IPP} = 5.5 V	-40°C		5.8		
				85°C		3.5		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz
		$V_{O} = V_{OH},$ R _L = 10 kΩ,		25°C		200		
Вом	Maximum output-swing bandwidth		C _L = 20 pF, See Figure 1	-40°C		260		kHz
			See ligure l	85°C		130		
			_	25°C		2.2		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 pF,	-40°C		3.1		MHz
		See Figure 5		85°C		1.7		
				25°C		49°		
φm	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 3	-40°C		52°		
		ο _L = 20 pi ,	occ i igure o	85°C		46°		

SLOS091E – OCTOBER 1987 – REVISED FEBRUARY 2002

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

		TEOT OO		-	TLC272	2M, TLC	277M	
	PARAMETER	TEST CO	NDITIONS	Τ _Α	MIN	TYP	MAX	UNIT
				25°C		3.6		
			V _{IPP} = 1 V	−55°C		4.7		
		$R_L = 10 k\Omega$,		125°C		2.3		Mur
SR	Slew rate at unity gain	C _L = 20 pF, See Figure 1		25°C		2.9		V/µs
		eeega.e .	VIPP = 2.5 V	−55°C		3.7		
				125°C		2		
v _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz
	Maximum output-swing bandwidth			25°C		320		
Вом		V _O = V _{OH} , R _I = 10 kΩ,		−55°C		400		kHz
		TC_ = 10 K32,	Occ rigure r	125°C		230		
			0 00 5	25°C		1.7		
^B 1	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	C _L = 20 pF,	−55°C		2.9		MHz
		Occ rigare o		125°C		1.1		
			<	25°C		46°		
φm	Phase margin	$V_I = 10 \text{ mV}, f = B$ $C_L = 20 \text{ pF}, \text{See}$	t = B ₁ , See Figure 3	−55°C		49°		
		ο _L = 20 μ,	eee rigure o	125°C		41°		

operating characteristics at specified free-air temperature, V_{DD} = 10 V

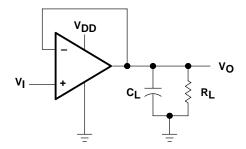
	DADAMETED	TEST CO		-	TLC27	2M, TLC	277M	
	PARAMETER	TEST CO	NDITIONS	Τ _Α	MIN	TYP	MAX	UNIT
				25°C		5.3		
			VIPP = 1 V	−55°C		7.1		
	Slew rate at unity gain	$R_{L} = 10 k\Omega$,		125°C		3.1		Mus
SR		C _L = 20 pF, See Figure 1		25°C		4.6		V/µs
		eee rigale r	VIPP = 5.5 V	−55°C		6.1		
				125°C		2.7		
v _n	Equivalent input noise voltage	f = 1 kHz, See Figure 2	R _S = 20 Ω,	25°C		25		nV/√Hz
	Maximum output-swing bandwidth			25°C		200		
Вом		V _O = V _{OH} , R _I = 10 kΩ,	$C_L = 20 \text{ pF},$	−55°C		280		kHz
		$\mathbf{R} = 10 \mathrm{Ksz},$	See ligure l	125°C		110		
				25°C		2.2		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 3	CL = 20 pF,	−55°C		3.4		MHz
		Gee rigure 3		125°C		1.6		
				25°C		49°		
φm	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 3	−55°C		52°		
		o 20 pr ,	occi iguic o	125°C		44°		

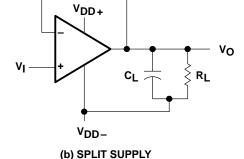
SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

operating characteristics, V_DD = 5 V, T_A = 25°C

	PARAMETER	т		Ne	Т	UNIT		
	PARAMETER	I	TEST CONDITIONS				MAX	UNIT
0.0		R _L = 10 kΩ,	C _L = 20 pF,	V _{IPP} = 1 V		3.6		Mar
SR	Slew rate at unity gain	See Figure 1		VIPP = 2.5 V	2.9			V/μs
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2		25		nV/√Hz
BOM	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	C _L = 20 pF,	R _L = 10 kΩ,		320		kHz
B ₁	Unity-gain bandwidth	Vj = 10 mV,	C _L = 20 pF,	See Figure 3		1.7		MHz
φm	Phase margin	V _I = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		46°		

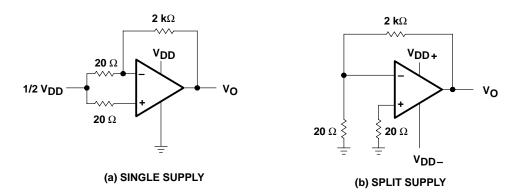
operating characteristics, V_{DD} = 10 V, T_A = 25°C


	PARAMETER		EST CONDITIO	Ne	TLC272Y			UNIT
	FARAMETER	I I					MAX	UNIT
0.0		R _L = 10 kΩ,	C _L = 20 pF,	VIPP = 1 V		5.3		Mura
SR	Slew rate at unity gain	See Figure 1		VIPP = 5.5 V		4.6		V/µs
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω,	See Figure 2		25		nV/√Hz
BOM	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	C _L = 20 pF,	R _L = 10 kΩ,		200		kHz
B ₁	Unity-gain bandwidth	Vj = 10 mV,	C _L = 20 pF,	See Figure 3		2.2		MHz
[¢] m	Phase margin	VI = 10 mV, See Figure 3	f = B ₁ ,	C _L = 20 pF,		49°		


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits


Because the TLC272 and TLC277 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

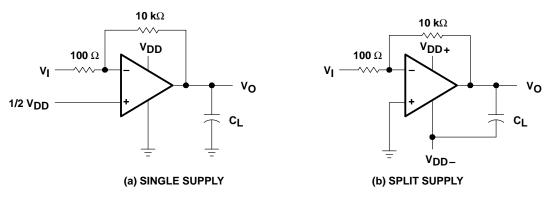


Figure 3. Gain-of-100 Inverting Amplifier

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC272 and TLC277 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.
- 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

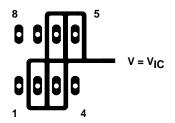


Figure 4. Isolation Metal Around Device Inputs (JG and P packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

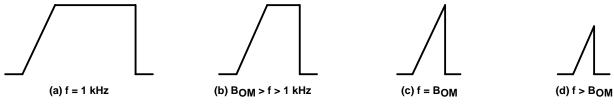
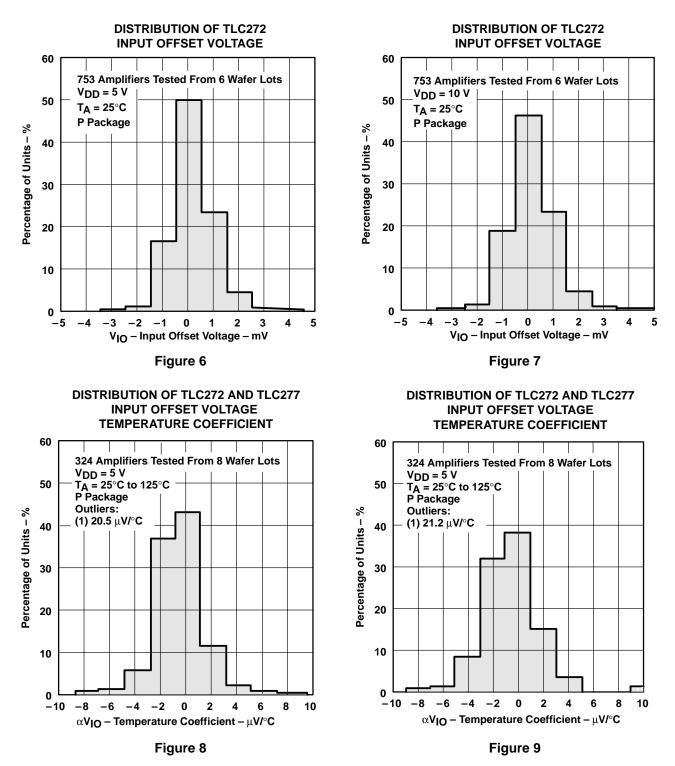


Figure 5. Full-Power-Response Output Signal

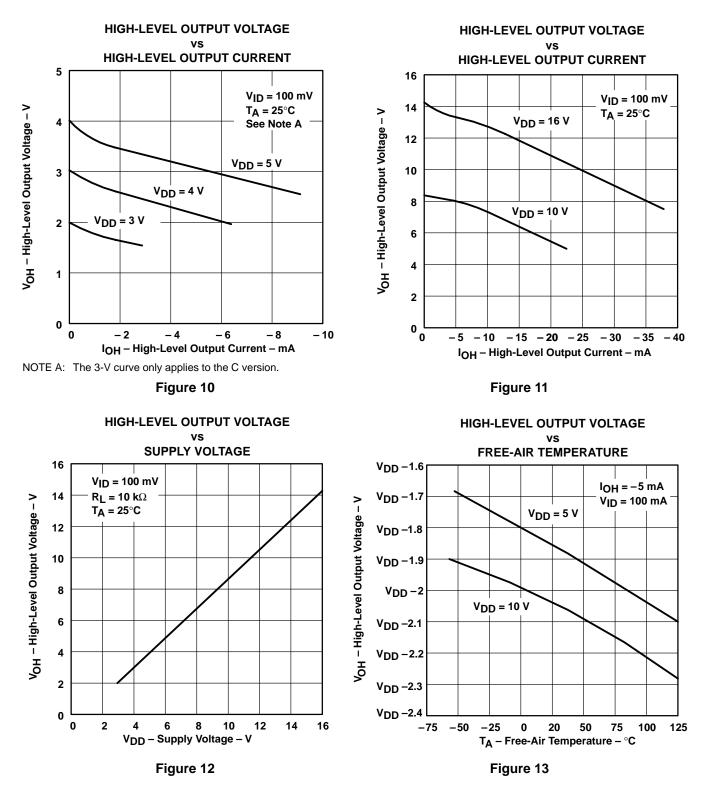
test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

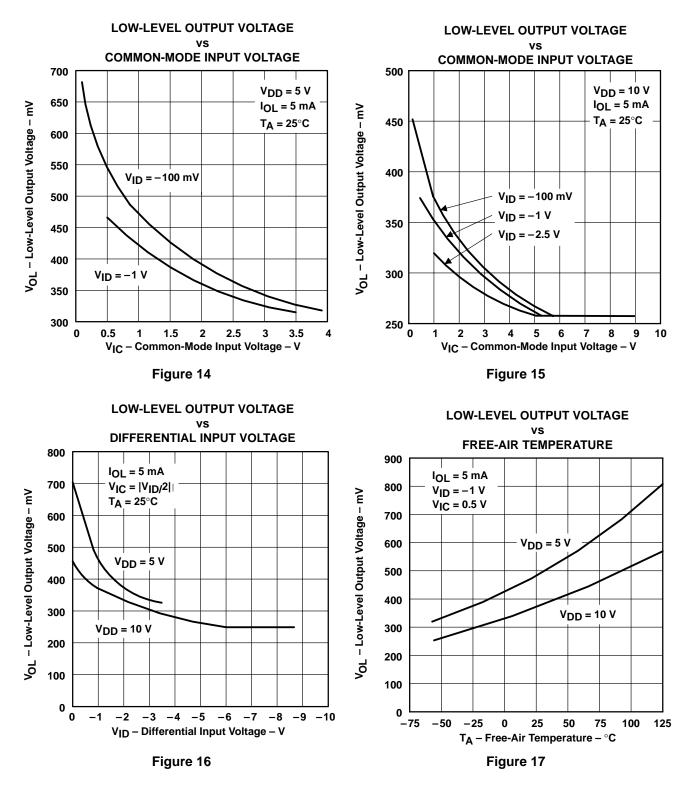

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS

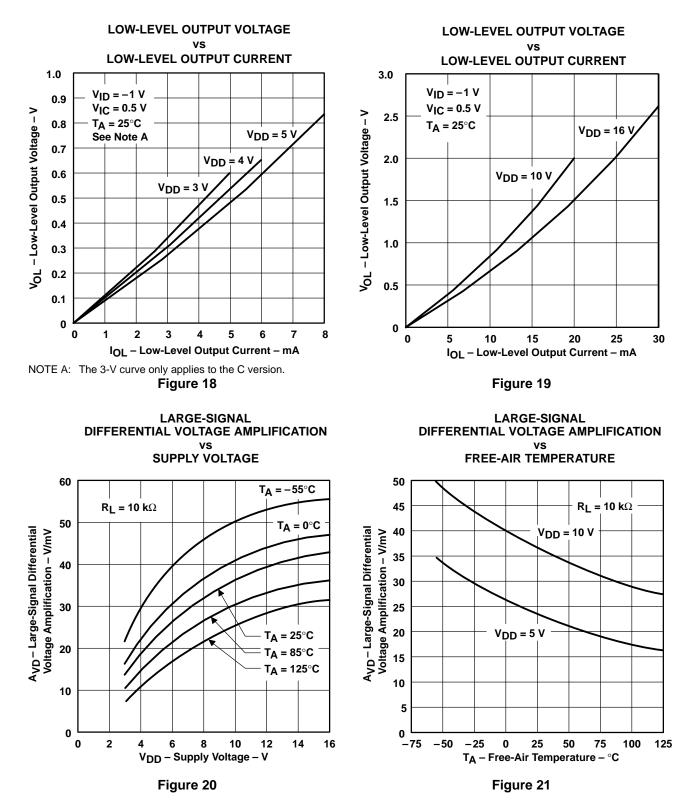
Table of Graphs

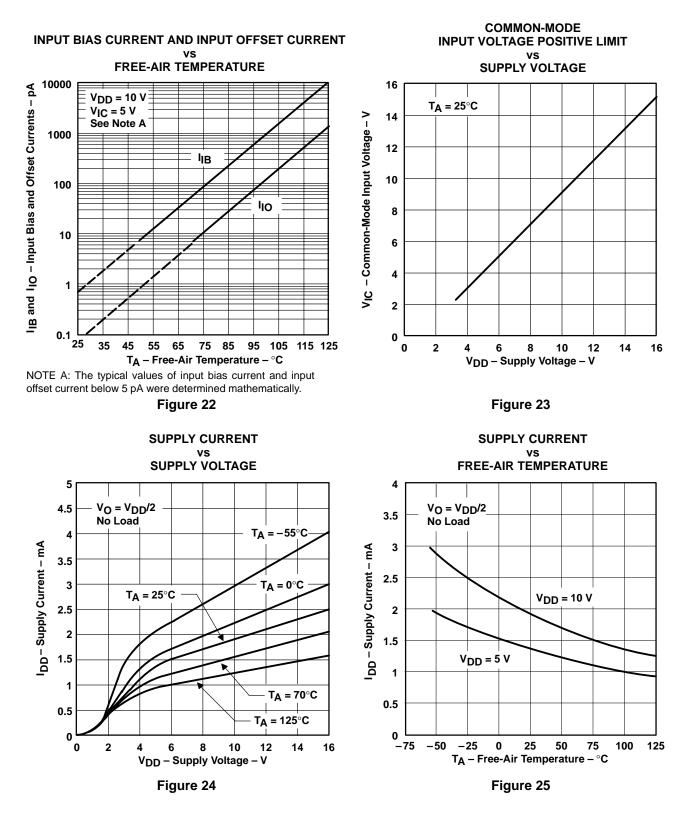

			FIGURE
VIO	Input offset voltage	Distribution	6, 7
ανιο	Temperature coefficient of input offset voltage	Distribution	8, 9
∨он	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	10, 11 12 13
V _{OL}	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	14, 15 16 17 18, 19
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	20 21 32, 33
I _{IB}	Input bias current	vs Free-air temperature	22
lio	Input offset current	vs Free-air temperature	22
VIC	Common-mode input voltage	vs Supply voltage	23
I _{DD}	Supply current	vs Supply voltage vs Free-air temperature	24 25
SR	Slew rate	vs Supply voltage vs Free-air temperature	26 27
	Normalized slew rate	vs Free-air temperature	28
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	29
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	30 31
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	34 35 36
Vn	Equivalent input noise voltage	vs Frequency	37
	Phase shift	vs Frequency	32, 33

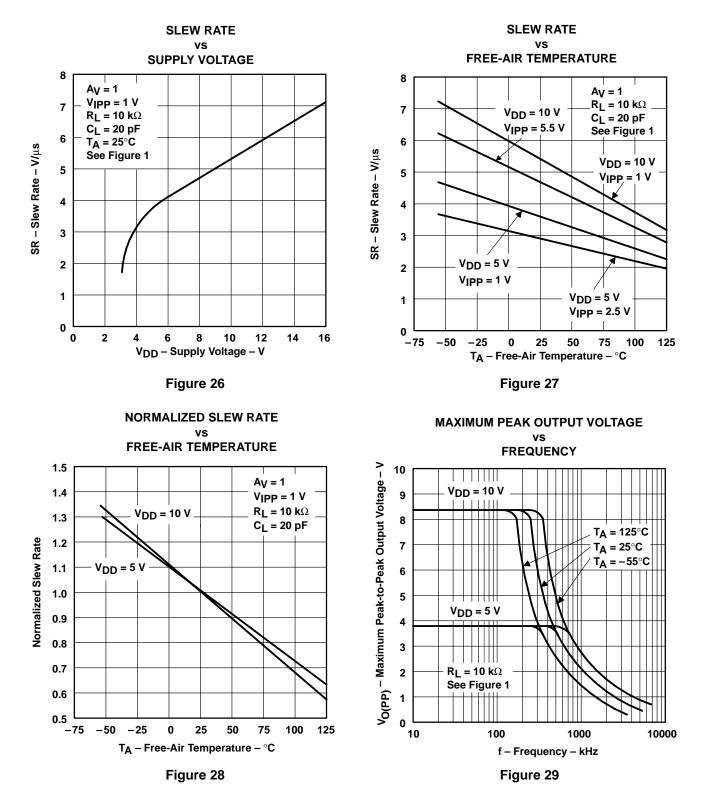
SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

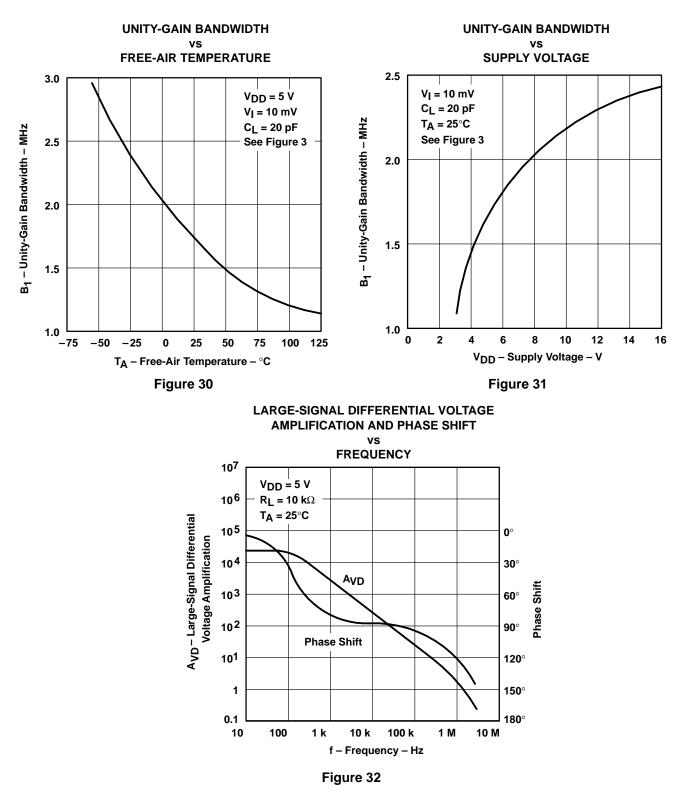


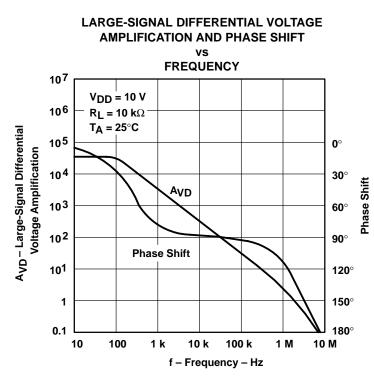
TYPICAL CHARACTERISTICS


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002


SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

TYPICAL CHARACTERISTICS[†]

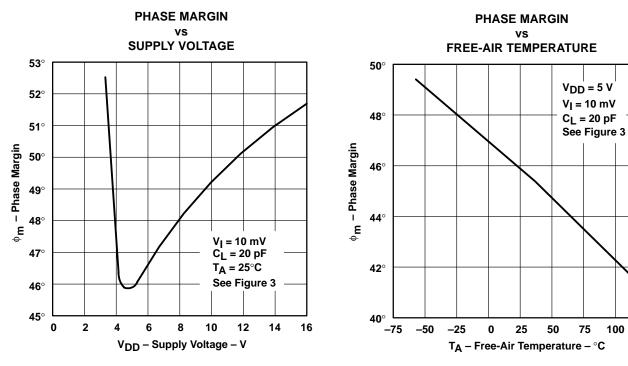
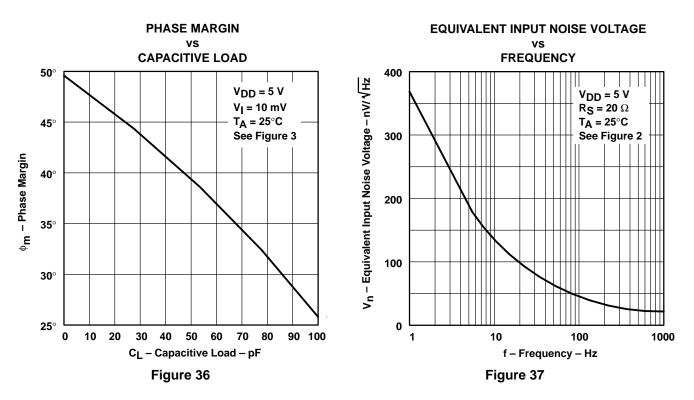



Figure 34

Figure 35

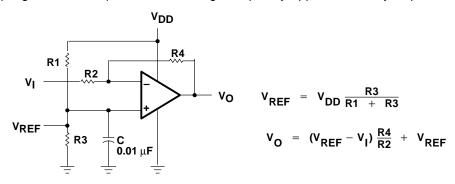
125

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

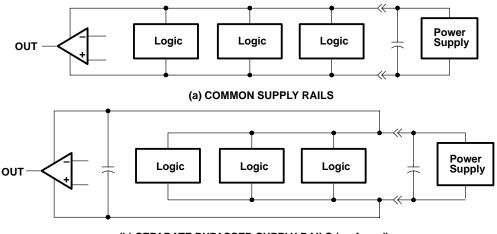
TYPICAL CHARACTERISTICS

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION


single-supply operation

While the TLC272 and TLC277 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.


Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC272 and TLC277 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC272 and TLC277 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling.

Figure 38. Inverting Amplifier With Voltage Reference

(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)

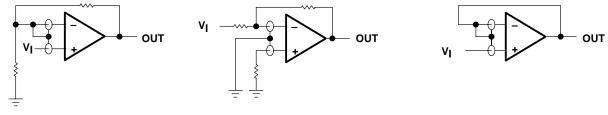
Figure 39. Common vs Separate Supply Rails

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

input characteristics

The TLC272 and TLC277 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD} - 1$ V at $T_A = 25^{\circ}$ C and at $V_{DD} - 1.5$ V at all other temperatures.


The use of the polysilicon-gate process and the careful input circuit design gives the TLC272 and TLC277 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 μ V/month, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC272 and TLC277 are well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40).

Unused amplifiers should be connected as grounded unity-gain followers to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC272 and TLC277 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k Ω , since bipolar devices exhibit greater noise currents.

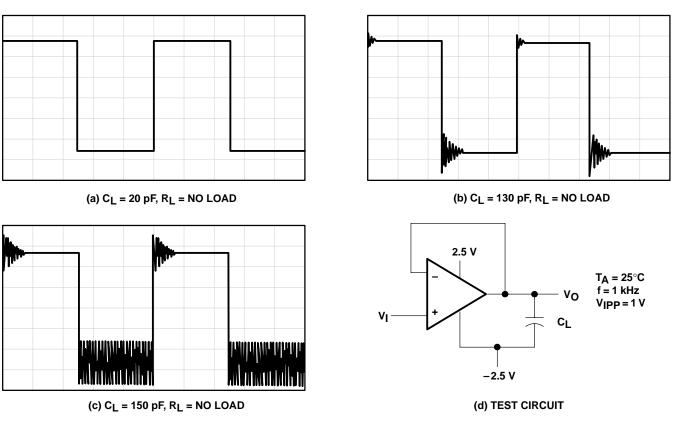
(a) NONINVERTING AMPLIFIER

(b) INVERTING AMPLIFIER

(c) UNITY-GAIN AMPLIFIER

Figure 40. Guard-Ring Schemes

output characteristics

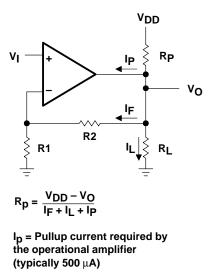

The output stage of the TLC272 and TLC277 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

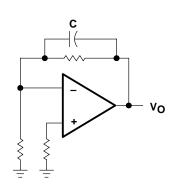
All operating characteristics of the TLC272 and TLC277 are measured using a 20-pF load. The devices can drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

output characteristics (continued)


Figure 41. Effect of Capacitive Loads and Test Circuit


Although the TLC272 and TLC277 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (R_P) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on resistance between approximately 60 Ω and 180 Ω , depending on how hard the operational amplifier input is driven. With very low values of R_P , a voltage offset from 0 V at the output occurs. Second, pullup resistor R_P acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

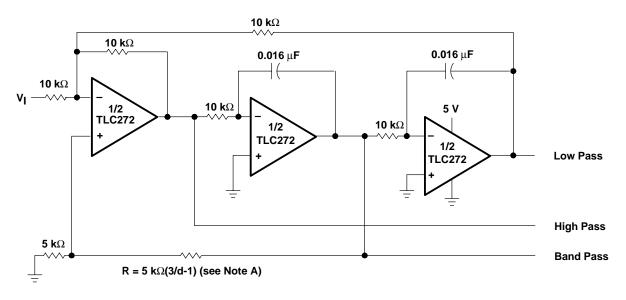
output characteristics (continued)

Figure 42. Resistive Pullup to Increase VOH

feedback

Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.

electrostatic discharge protection


The TLC272 and TLC277 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC272 and TLC277 inputs and outputs were designed to withstand –100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

Figure 44. State-Variable Filter

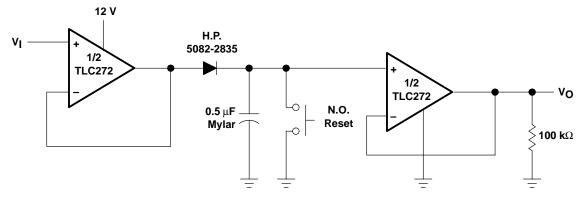
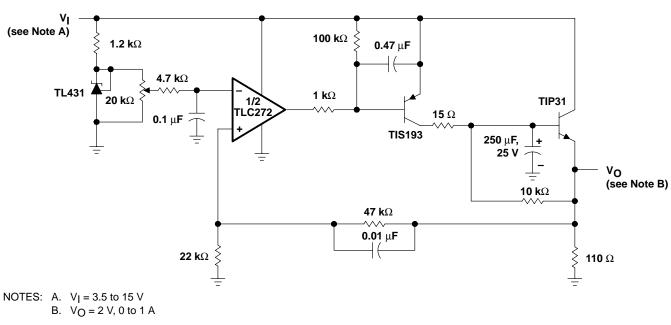



Figure 45. Positive-Peak Detector

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

Figure 46. Logic-Array Power Supply

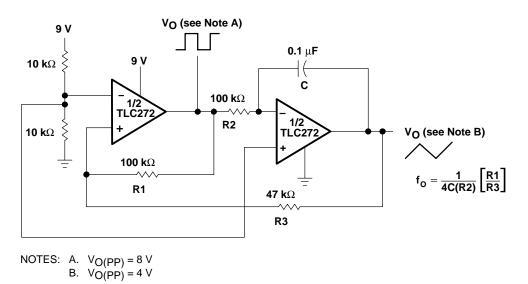
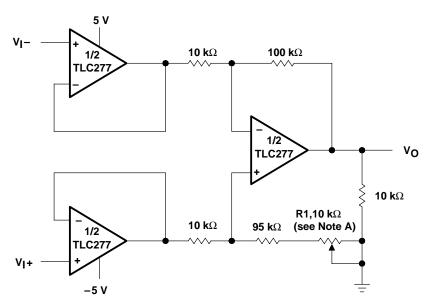



Figure 47. Single-Supply Function Generator

SLOS091E - OCTOBER 1987 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

NOTE B: CMRR adjustment must be noninductive.

Figure 48. Low-Power Instrumentation Amplifier

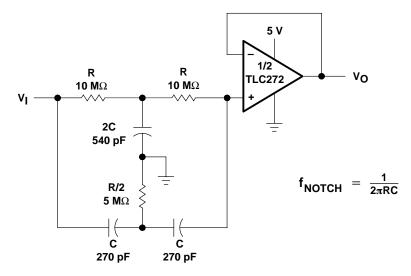


Figure 49. Single-Supply Twin-T Notch Filter

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TLC272ACD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272AC	Samples
TLC272ACDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272AC	Samples
TLC272ACP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272ACP	Samples
TLC272ACPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272ACP	Samples
TLC272AID	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	272AI	Samples
TLC272AIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	272AI	Samples
TLC272AIP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC272AIP	Samples
TLC272BCD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272BC	Samples
TLC272BCDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272BC	Samples
TLC272BCP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272BCP	Samples
TLC272BCPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272BCP	Samples
TLC272BCPS	ACTIVE	SO	PS	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272B	Samples
TLC272BID	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	272BI	Samples
TLC272BIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	272BI	Samples
TLC272BIDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	272BI	Samples
TLC272BIP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC272BIP	Samples
TLC272CD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	Samples
TLC272CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	Samples
TLC272CDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	272C	Samples
TLC272CP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272CP	Samples

PACKAGE OPTION ADDENDUM

14-Aug-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TLC272CPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC272CP	Samples
TLC272CPS	ACTIVE	SO	PS	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272	Samples
TLC272CPSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272	Samples
TLC272CPW	ACTIVE	TSSOP	PW	8	150	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272C	Samples
TLC272CPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272C	Samples
TLC272CPWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P272C	Samples
TLC272ID	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	Samples
TLC272IDG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	Samples
TLC272IDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	Samples
TLC272IDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2721	Samples
TLC272IP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC272IP	Samples
TLC272IPE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC272IP	Samples
TLC277CD	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	277C	Samples
TLC277CDG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	277C	Samples
TLC277CDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	277C	Samples
TLC277CP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	TLC277CP	Samples
TLC277CPS	ACTIVE	SO	PS	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P277	Samples
TLC277CPSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	P277	Samples
TLC277ID	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2771	Samples
TLC277IDG4	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2771	Samples
TLC277IDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2771	Samples

PACKAGE OPTION ADDENDUM

14-Aug-2021

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TLC277IP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	TLC277IP	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

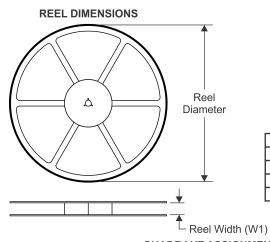
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

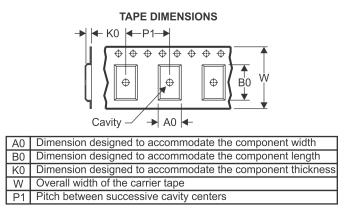
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

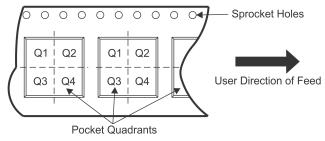
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

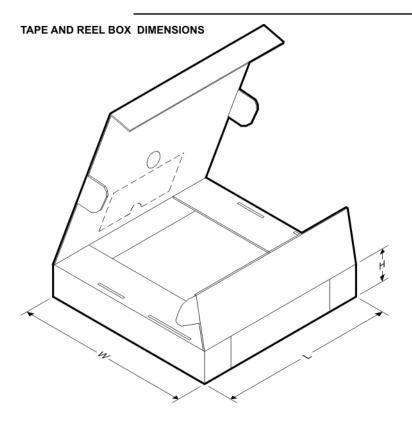

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


23-Jul-2021

TAPE AND REEL INFORMATION

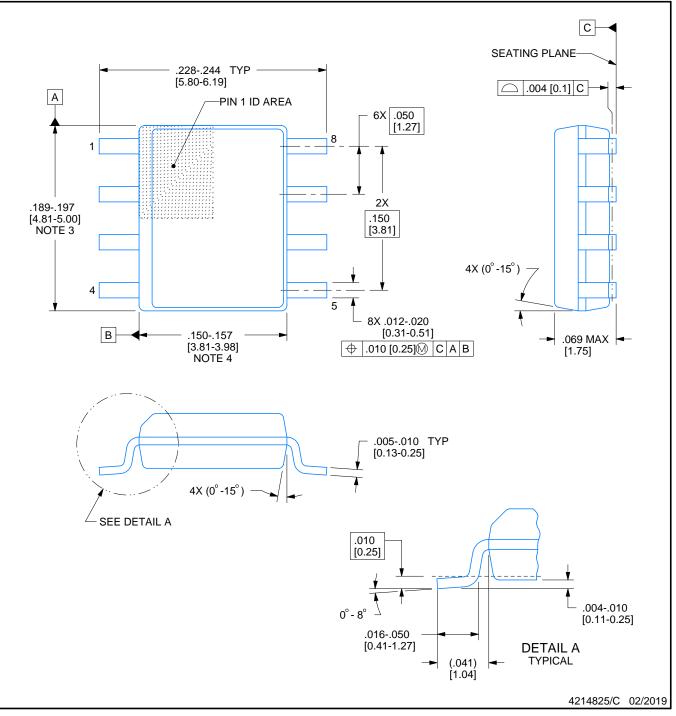

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC272ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272BCDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC272CPSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.5	12.0	16.0	Q1
TLC272CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC272IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC277CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC277CPSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.5	12.0	16.0	Q1
TLC277IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

23-Jul-2021

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC272ACDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272AIDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272BCDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272BIDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272CDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC272CPSR	SO	PS	8	2000	367.0	367.0	38.0
TLC272CPWR	TSSOP	PW	8	2000	853.0	449.0	35.0
TLC272IDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC277CDR	SOIC	D	8	2500	340.5	336.1	25.0
TLC277CPSR	SO	PS	8	2000	853.0	449.0	35.0
TLC277IDR	SOIC	D	8	2500	340.5	336.1	25.0


D0008A

PACKAGE OUTLINE

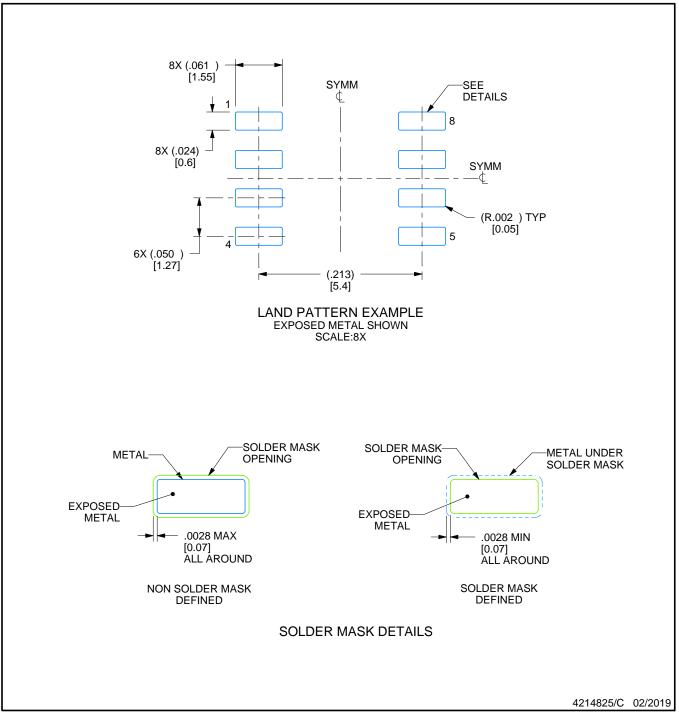
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

2. This drawing is subject to change without notice.


- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

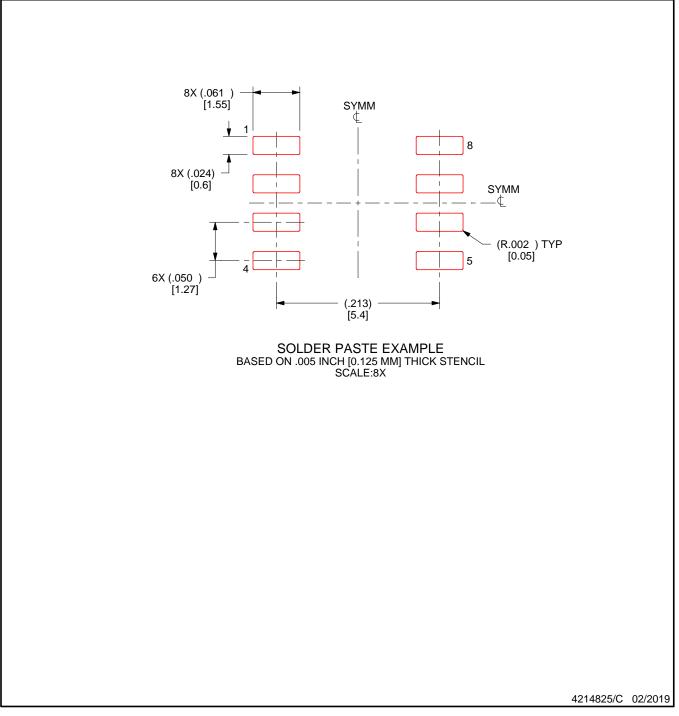
EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

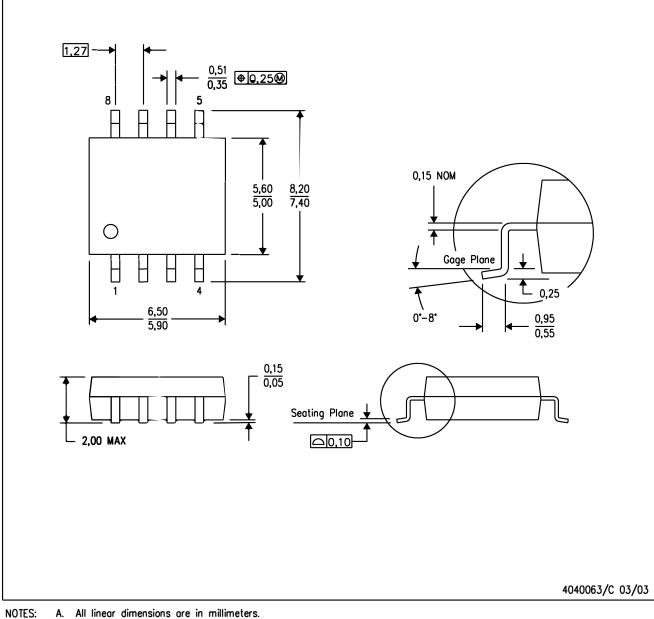
D0008A

EXAMPLE STENCIL DESIGN

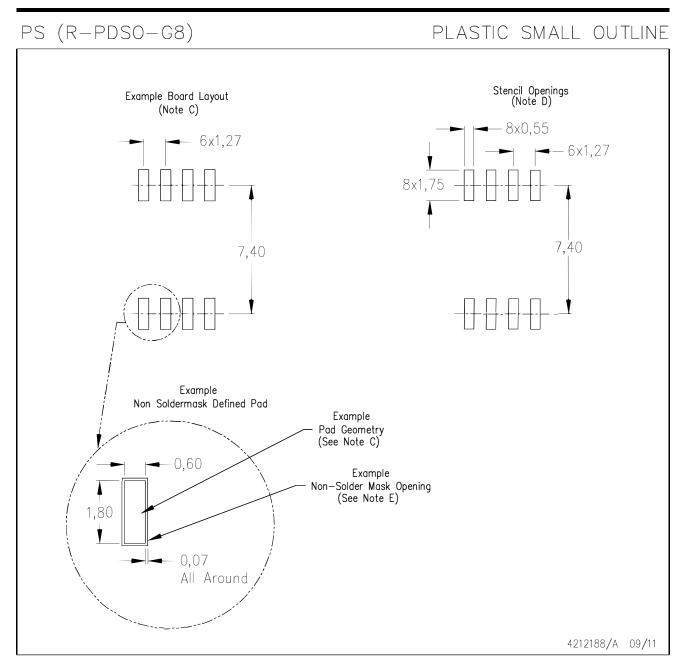
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)


^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

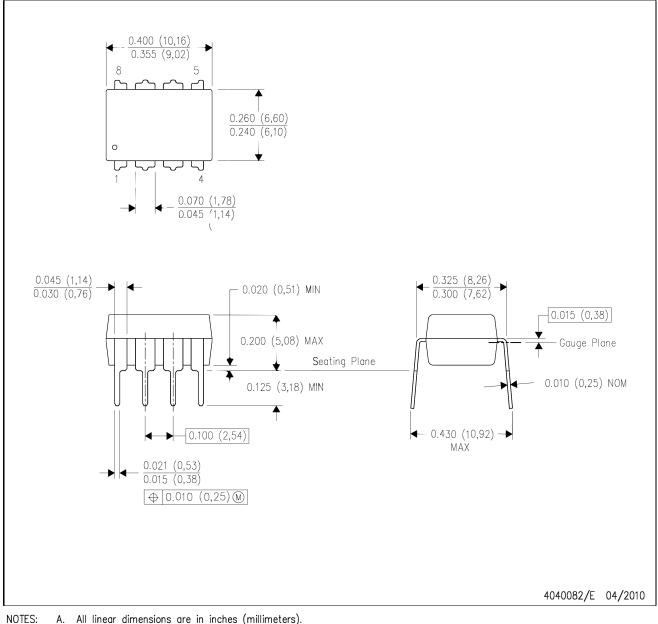
^{9.} Board assembly site may have different recommendations for stencil design.


MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


NOTES:

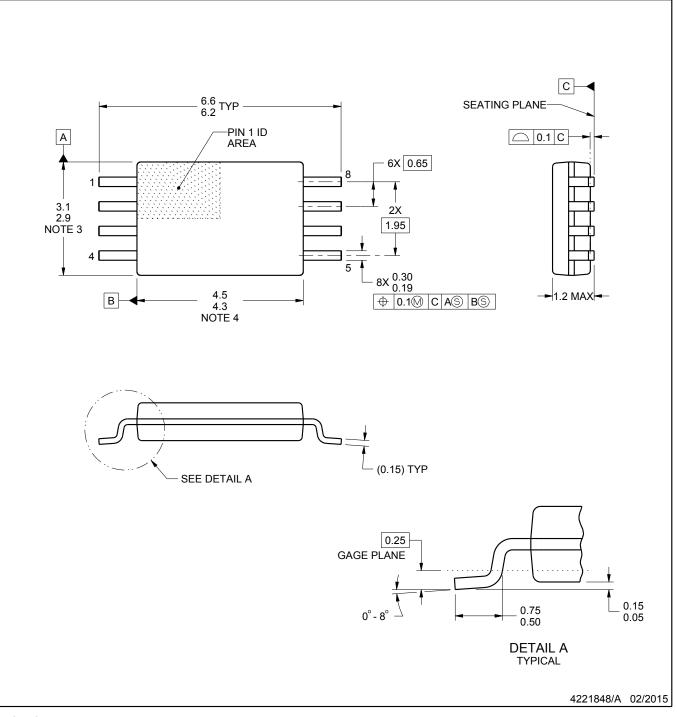
A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

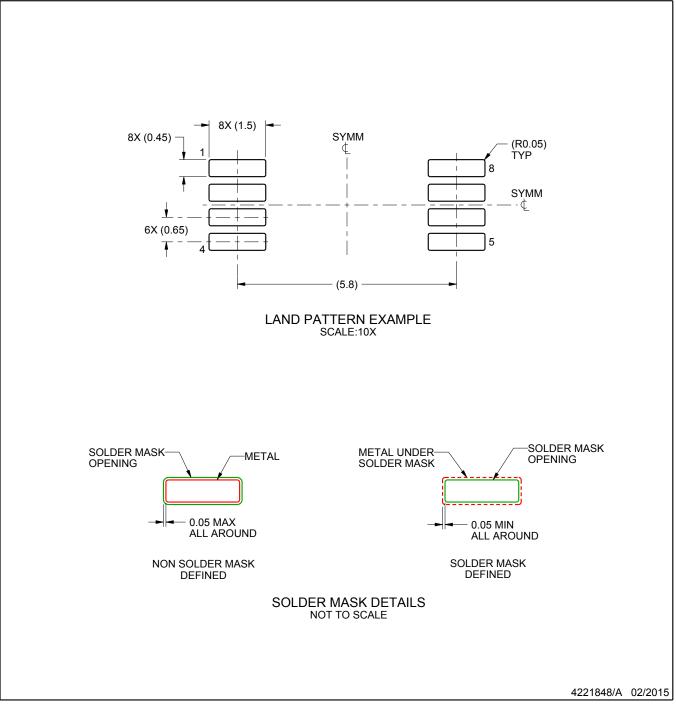

PW0008A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

PW0008A

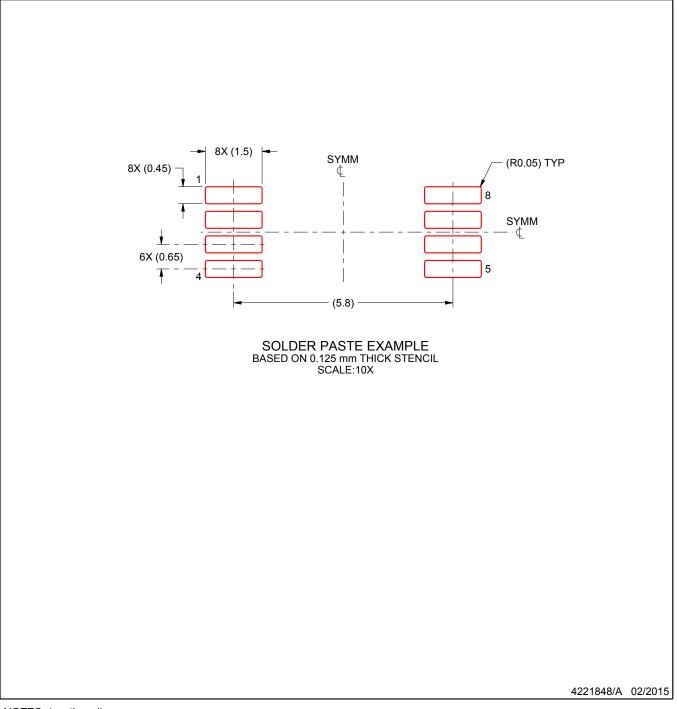
EXAMPLE BOARD LAYOUT

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PW0008A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{9.} Board assembly site may have different recommendations for stencil design.